Difference between revisions of "Mock AIME 5 2005-2006 Problems/Problem 1"

(Solution)
(Solution)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
So all of the prime numbers less than 50 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47. So we just need to find the number of numbers that are divisible by 2, the number of numbers divisible by 3, etc.
+
So all of the prime numbers less than <math>50</math> are <math>2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,</math> and <math>47</math>. So we just need to find the number of numbers that are divisible by <math>2</math>, the number of numbers divisible by <math>3</math>, etc.
  
 
<math>\lfloor 99/2\rfloor =49</math>
 
<math>\lfloor 99/2\rfloor =49</math>
Line 37: Line 37:
 
So we compute
 
So we compute
  
<cmath>49*2+33*3+19*5+14*7+9*11+7*13+5*17+5*19+4*23+3*29+3*31+2*37+2*41+2*43+2*47</cmath>
+
<cmath>49\times2+33\times3+19\times5+14\times7+9\times11+7\times13+5\times17+5\times19+4\times23+3\times29+3\times31+2\times37+2\times41+2\times43+\times47</cmath>
  
  
Line 49: Line 49:
  
  
<cmath>=760+608=1\boxed{368}</cmath>
+
<cmath>=760+608=\boxed{1368}</cmath>
  
 
== See also ==
 
== See also ==

Revision as of 08:07, 24 April 2016

Problem

Suppose $n$ is a positive integer. Let $f(n)$ be the sum of the distinct positive prime divisors of $n$ less than $50$ (e.g. $f(12) = 2+3 = 5$ and $f(101) = 0$). Evaluate the remainder when $f(1)+f(2)+\cdots+f(99)$ is divided by $1000$.

Solution

So all of the prime numbers less than $50$ are $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,$ and $47$. So we just need to find the number of numbers that are divisible by $2$, the number of numbers divisible by $3$, etc.

$\lfloor 99/2\rfloor =49$

$\lfloor 99/3\rfloor =33$

$\lfloor 99/5\rfloor =19$

$\lfloor 99/7\rfloor =14$

$\lfloor 99/11\rfloor =9$

$\lfloor 99/13\rfloor =7$

$\lfloor 99/17\rfloor =5$

$\lfloor 99/19\rfloor =5$

$\lfloor 99/23\rfloor =4$

$\lfloor 99/29\rfloor =3$

$\lfloor 99/31\rfloor =3$

$\lfloor 99/37\rfloor =2$

$\lfloor 99/41\rfloor =2$

$\lfloor 99/43\rfloor =2$

$\lfloor 99/47\rfloor =2$

So we compute

\[49\times2+33\times3+19\times5+14\times7+9\times11+7\times13+5\times17+5\times19+4\times23+3\times29+3\times31+2\times37+2\times41+2\times43+\times47\]


\[=98+99+95+98+99+91+85+95+92+87+93+74+82+86+94\]


\[=197+193+190+180+179+167+168+94=390+370+346+262\]


\[=760+608=\boxed{1368}\]

See also

Mock AIME 5 2005-2006 (Problems, Source)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15