Difference between revisions of "2016 USAJMO Problems/Problem 1"
(Created page with "== Problem == The isosceles triangle <math>\triangle ABC</math>, with <math>AB=AC</math>, is inscribed in the circle <math>\omega</math>. Let <math>P</math> be a variable poi...") |
|||
Line 8: | Line 8: | ||
We will use complex numbers, with the circumcircle of <math>\triangle ABC</math> as the unit circle. Let <cmath>A=1, B=w^2,C=\frac{1}{w^2}, P=p^2,</cmath> such that <cmath>I_B=w+wp-p, I_C=p-\frac{p}{w}+\frac{1}{w}.</cmath> We claim that the circumcircle of <math>\triangle PI_BI_C</math> passes through <math>M=-1.</math> This is true iff <cmath>k=\frac{(I_B-M)(I_C-P)}{(I_B-P)(I_C-M)}=\frac{(w+wp-p+1)(p+\frac{1}{w}-\frac{p}{w}-p^2)}{(w+wp-p-p^2)(p+\frac{1}{w}-\frac{p}{w}+1)}=\frac{(wp+1)(1-p)}{(p+1)(w-p)}</cmath> is real. This is true iff <math>k=\overline{k}.</math> We can compute <cmath>\overline{k}=\frac{(1+\frac{1}{wp})(1-\frac{1}{p})}{(\frac{1}{p}+1)(\frac{1}{w}-\frac{1}{p})}=k,</cmath> so we are done. <math>\blacksquare</math> | We will use complex numbers, with the circumcircle of <math>\triangle ABC</math> as the unit circle. Let <cmath>A=1, B=w^2,C=\frac{1}{w^2}, P=p^2,</cmath> such that <cmath>I_B=w+wp-p, I_C=p-\frac{p}{w}+\frac{1}{w}.</cmath> We claim that the circumcircle of <math>\triangle PI_BI_C</math> passes through <math>M=-1.</math> This is true iff <cmath>k=\frac{(I_B-M)(I_C-P)}{(I_B-P)(I_C-M)}=\frac{(w+wp-p+1)(p+\frac{1}{w}-\frac{p}{w}-p^2)}{(w+wp-p-p^2)(p+\frac{1}{w}-\frac{p}{w}+1)}=\frac{(wp+1)(1-p)}{(p+1)(w-p)}</cmath> is real. This is true iff <math>k=\overline{k}.</math> We can compute <cmath>\overline{k}=\frac{(1+\frac{1}{wp})(1-\frac{1}{p})}{(\frac{1}{p}+1)(\frac{1}{w}-\frac{1}{p})}=k,</cmath> so we are done. <math>\blacksquare</math> | ||
+ | |||
+ | {{MAA Notice}} | ||
+ | |||
+ | ==See also== | ||
+ | {{USAJMO newbox|year=2016|beforetext=|before=First Problem|num-a=2}} |
Revision as of 15:33, 21 April 2016
Problem
The isosceles triangle , with , is inscribed in the circle . Let be a variable point on the arc that does not contain , and let and denote the incenters of triangles and , respectively.
Prove that as varies, the circumcircle of triangle passes through a fixed point.
Solution
We will use complex numbers, with the circumcircle of as the unit circle. Let such that We claim that the circumcircle of passes through This is true iff is real. This is true iff We can compute so we are done.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.
See also
2016 USAJMO (Problems • Resources) | ||
First Problem | Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |