Difference between revisions of "Phi"

m
Line 4: Line 4:
  
 
The first few digits of Phi in decimal representation are: 1.61803398874989...
 
The first few digits of Phi in decimal representation are: 1.61803398874989...
 +
 +
Phi is also commonly used to represent [[Euler's totient function]].
  
 
==See also==
 
==See also==

Revision as of 10:31, 14 July 2006

Phi ($\phi$) is a letter in the Greek alphabet. It is often used to represent the constant $\frac{1+\sqrt{5}}{2}$. $\phi$ appears in a variety of different mathematical contexts: it is the limit of the ratio of successive terms of the Fibonacci sequence, as well as the positive solution of the quadratic equation $x^2-x-1=0$.

Phi is also known as the Golden Ratio. It was commonly believed by the Greeks to be the most aesthetically pleasing ratio between side lengths in a rectangle.

The first few digits of Phi in decimal representation are: 1.61803398874989...

Phi is also commonly used to represent Euler's totient function.

See also

This article is a stub. Help us out by expanding it.