Difference between revisions of "Cyclic quadrilateral"

(Properties)
m (Properties)
Line 12: Line 12:
 
* <math>\angle BAC = \angle BDC</math>
 
* <math>\angle BAC = \angle BDC</math>
 
* <math>\angle CAD = \angle CBD</math>
 
* <math>\angle CAD = \angle CBD</math>
* <math>\angle CAB = \angle CDB</math>
 
  
 
== Applicable Theorems/Formulae ==
 
== Applicable Theorems/Formulae ==

Revision as of 02:21, 31 January 2016

A cyclic quadrilateral is a quadrilateral that can be inscribed in a circle. They have a number of interesting properties.

Cyclicquad2.png

Properties

In cyclic quadrilateral $ABCD$:

  • $\angle A + \angle C = \angle B + \angle D = {180}^{o}$
  • $\angle ABD = \angle ACD$
  • $\angle BCA = \angle BDA$
  • $\angle BAC = \angle BDC$
  • $\angle CAD = \angle CBD$

Applicable Theorems/Formulae

The following theorems and formulae apply to cyclic quadrilaterals:

This article is a stub. Help us out by expanding it.