Difference between revisions of "1952 AHSME Problems/Problem 50"

(Solution)
(Solution)
Line 14: Line 14:
 
== Solution ==
 
== Solution ==
 
We can rewrite our sum as the sum of two infinite geometric sequences.
 
We can rewrite our sum as the sum of two infinite geometric sequences.
<cmath>1 + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \frac{1}{16}\sqrt{2} + \frac{1}{16} + ...</cmath>
+
<cmath>1 + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \frac{1}{16}\sqrt{2} + \frac{1}{16} + ... = </cmath>
<cmath>=</cmath>
 
 
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + (\frac{1}{4}\sqrt{2} + \frac{1}{16}\sqrt{2} + \frac{1}{64}\sqrt{2} + ...)</cmath>
 
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + (\frac{1}{4}\sqrt{2} + \frac{1}{16}\sqrt{2} + \frac{1}{64}\sqrt{2} + ...)</cmath>
 
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...)</cmath>
 
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...)</cmath>
 
We now take the sum of each of the infinite geometric sequences separately
 
We now take the sum of each of the infinite geometric sequences separately
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...)</cmath>
+
<cmath>(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) = </cmath>
 +
<cmath>\frac{1}{1 - \frac{1}{4}} + \sqrt{2}(\frac{\frac{1}{4}}{1 - \frac{1}{4}})</cmath>
 +
<cmath>\frac{4}{3} + \frac{\sqrt{2}}{3}</cmath>
 +
<cmath>\frac{1}{3}(4 + \sqrt{2})</cmath>
 +
 
 +
Therefore, the answer is <math>\fbox{(D) \frac{1}{3}(4 + \sqrt{2})}</math>
  
 
== See also ==
 
== See also ==

Revision as of 19:16, 22 December 2015

Problem

A line initially 1 inch long grows according to the following law, where the first term is the initial length.

\[1+\frac{1}{4}\sqrt{2}+\frac{1}{4}+\frac{1}{16}\sqrt{2}+\frac{1}{16}+\frac{1}{64}\sqrt{2}+\frac{1}{64}+\cdots\] (Error making remote request. Unexpected URL sent back)

If the growth process continues forever, the limit of the length of the line is:

$\textbf{(A) } \infty\qquad \textbf{(B) } \frac{4}{3}\qquad \textbf{(C) } \frac{8}{3}\qquad \textbf{(D) } \frac{1}{3}(4+\sqrt{2})\qquad \textbf{(E) } \frac{2}{3}(4+\sqrt{2})$

Solution

We can rewrite our sum as the sum of two infinite geometric sequences. \[1 + \frac{1}{4}\sqrt{2} + \frac{1}{4} + \frac{1}{16}\sqrt{2} + \frac{1}{16} + ... =\] \[(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + (\frac{1}{4}\sqrt{2} + \frac{1}{16}\sqrt{2} + \frac{1}{64}\sqrt{2} + ...)\] \[(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...)\] We now take the sum of each of the infinite geometric sequences separately \[(1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) + \sqrt{2}(\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ...) =\] \[\frac{1}{1 - \frac{1}{4}} + \sqrt{2}(\frac{\frac{1}{4}}{1 - \frac{1}{4}})\] \[\frac{4}{3} + \frac{\sqrt{2}}{3}\] \[\frac{1}{3}(4 + \sqrt{2})\]

Therefore, the answer is $\fbox{(D) \frac{1}{3}(4 + \sqrt{2})}$ (Error compiling LaTeX. Unknown error_msg)

See also

1952 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 49
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png