Difference between revisions of "2015 AMC 8 Problems/Problem 6"
Boompenguinz (talk | contribs) (→Solution 2) |
(→Solution 1) |
||
Line 4: | Line 4: | ||
===Solution 1=== | ===Solution 1=== | ||
− | We know the semi-perimeter of <math>\triangle ABC</math> is <math>\frac{29+29+42}{2}=50</math>. Next, we use | + | We know the semi-perimeter of <math>\triangle ABC</math> is <math>\frac{29+29+42}{2}=50</math>. Next, we use Heron's Formula to find that the area of the triangle is just <math>\sqrt{50(50-29)^2(50-42)}=\sqrt{50 \cdot 21^2 \cdot 8}=\boxed{\textbf{(B) }420}</math>. |
===Solution 2=== | ===Solution 2=== |
Revision as of 10:53, 30 November 2015
In , , and . What is the area of ?
Solution 1
We know the semi-perimeter of is . Next, we use Heron's Formula to find that the area of the triangle is just .
Solution 2
Splitting the isosceles triangle in half, we get a right triangle with hypotenuse and leg . Using the Pythagorean Theorem , we get . Now that we know the height, the area is .
See Also
2015 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.