Difference between revisions of "2015 AMC 8 Problems/Problem 11"
(Created page with "In the small country of Mathland, all automobile license plates have four symbols. The first must be a vowel (A, E, I, O, or U), the second and third must be two different let...") |
Math101010 (talk | contribs) |
||
Line 8: | Line 8: | ||
\textbf{(E) } \frac{1}{1,050} | \textbf{(E) } \frac{1}{1,050} | ||
</math> | </math> | ||
+ | |||
+ | The area of <math>\triangle ABC</math> is equal to half the product of its base and height. By the Pythagorean Theorem, we find its height is <math>\sqrt{1^2+2^2}=\sqrt{5}</math>, and its base is <math>\sqrt{2^2+4^2}=\sqrt{20}</math>. We multiply these and divide by 2 to find the of the triangle is <math>\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5</math>. Since the grid has an area of <math>30</math>, the fraction of the grid covered by the triangle is <math>\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC8 box|year=2015|num-b=10|num-a=12}} | ||
+ | {{MAA Notice}} |
Revision as of 16:23, 25 November 2015
In the small country of Mathland, all automobile license plates have four symbols. The first must be a vowel (A, E, I, O, or U), the second and third must be two different letters among the 21 non-vowels, and the fourth must be a digit (0 through 9). If the symbols are chosen at random subject to these conditions, what is the probability that the plate will read "AMC8"?
The area of is equal to half the product of its base and height. By the Pythagorean Theorem, we find its height is , and its base is . We multiply these and divide by 2 to find the of the triangle is . Since the grid has an area of , the fraction of the grid covered by the triangle is .
See Also
2015 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.