Difference between revisions of "1993 AIME Problems/Problem 7"
(→Solution 2) |
(→Solution 2) |
||
Line 14: | Line 14: | ||
== Solution 2 == | == Solution 2 == | ||
− | Like solution 1, call the six numbers selected <math>x_1 > x_2 > x_3 > x_4 > x_5 > x_6</math>. Using the hook-length formula, the number of valid configuration is <math>\frac{6!}{4\cdot3\cdot2\cdot3\cdot2}</math>. This gives us <math>5</math>, and we proceed as solution 1 did. | + | Like <math>solution 1</math>, call the six numbers selected <math>x_1 > x_2 > x_3 > x_4 > x_5 > x_6</math>. Using the hook-length formula, the number of valid configuration is <math>\frac{6!}{4\cdot3\cdot2\cdot3\cdot2}</math>. This gives us <math>5</math>, and we proceed as <math>solution 1</math> did. |
== See also == | == See also == |
Revision as of 20:05, 27 October 2015
Contents
Problem
Three numbers, , , , are drawn randomly and without replacement from the set . Three other numbers, , , , are then drawn randomly and without replacement from the remaining set of 997 numbers. Let be the probability that, after a suitable rotation, a brick of dimensions can be enclosed in a box of dimensions , with the sides of the brick parallel to the sides of the box. If is written as a fraction in lowest terms, what is the sum of the numerator and denominator?
Solution 1
Call the six numbers selected . Clearly, must be a dimension of the box, and must be a dimension of the brick.
- If is a dimension of the box, then any of the other three remaining dimensions will work as a dimension of the box. That gives us possibilities.
- If is not a dimension of the box but is, then both remaining dimensions will work as a dimension of the box. That gives us possibilities.
- If is a dimension of the box but aren’t, there are no possibilities (same for ).
The total number of arrangements is ; therefore, , and the answer is .
Note that the in the problem, is not used, and is cleverly bypassed in the solution, because we can call our six numbers whether they may be or .
Solution 2
Like , call the six numbers selected . Using the hook-length formula, the number of valid configuration is . This gives us , and we proceed as did.
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.