Difference between revisions of "2006 AMC 12A Problems/Problem 18"

Line 9: Line 9:
 
<math> \mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}</math>
 
<math> \mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}</math>
  
<math>\mathrm{(C) \ } \{x|x>0\}</math><math>\mathrm{(D) \ } \{x|x\ne -1\;\rm{and}\; x\ne 0\;\rm{and}\; x\ne 1\}</math>
+
<math>\mathrm{(C) \ } \{x|x>0\}</math><math>\mathrm{(D) \ } \{x|x\ne -1\;\rm{and}\; x\ne 0\;\rm{and}\; x\ne 1\}</math><math>\mathrm{(E) \ }  \{-1,1\}</math>
 
 
<math>\mathrm{(E) \ }  \{-1,1\}</math>
 
  
 
== Solution ==
 
== Solution ==

Revision as of 23:02, 10 July 2006

Problem

The function $f$ has the property that for each real number $x$ in its domain, $1/x$ is also in its domain and

$f(x)+f\left(\frac{1}{x}\right)=x$

What is the largest set of real numbers that can be in the domain of $f$?

$\mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}$

$\mathrm{(C) \ } \{x|x>0\}$$\mathrm{(D) \ } \{x|x\ne -1\;\rm{and}\; x\ne 0\;\rm{and}\; x\ne 1\}$$\mathrm{(E) \ }  \{-1,1\}$

Solution

See also