Difference between revisions of "2006 AMC 12A Problems/Problem 15"

Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
 +
Suppose <math>\cos x=0</math> and <math>\cos (x+z)=1/2</math>. What is the smallest possible positive value of <math>z</math>?
 +
 +
<math> \mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6}</math>
 +
 +
<math>\mathrm{(E) \ }  \frac{7\pi}{6}</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 22:56, 10 July 2006

Problem

Suppose $\cos x=0$ and $\cos (x+z)=1/2$. What is the smallest possible positive value of $z$?

$\mathrm{(A) \ } \frac{\pi}{6}\qquad \mathrm{(B) \ } \frac{\pi}{3}\qquad \mathrm{(C) \ } \frac{\pi}{2}\qquad \mathrm{(D) \ } \frac{5\pi}{6}$

$\mathrm{(E) \ }  \frac{7\pi}{6}$

Solution

See also