Difference between revisions of "2002 AIME II Problems/Problem 13"
(→Solution) |
|||
Line 2: | Line 2: | ||
In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 3,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | In triangle <math>ABC,</math> point <math>D</math> is on <math>\overline{BC}</math> with <math>CD = 2</math> and <math>DB = 5,</math> point <math>E</math> is on <math>\overline{AC}</math> with <math>CE = 1</math> and <math>EA = 3,</math> <math>AB = 8,</math> and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P.</math> Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}.</math> It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
− | == Solution == | + | == Solution 1 == |
Let <math>X</math> be the intersection of <math>\overline{CP}</math> and <math>\overline{AB}</math>. | Let <math>X</math> be the intersection of <math>\overline{CP}</math> and <math>\overline{AB}</math>. | ||
Line 58: | Line 58: | ||
<math>W_P=W_C+W_X=15+11=26</math>. | <math>W_P=W_C+W_X=15+11=26</math>. | ||
− | Thus, <math>\frac{PX}{CX}=\frac{W_C}{W_P}=\frac{15}{26}</math>. Therefore, <math>\frac{[\Delta PQR]}{[\Delta ABC]} = \left( \frac{15}{26} \right)^2 = \frac{225}{676}</math>, and <math>m+n=\boxed{901}</math>. | + | Thus, <math>\frac{PX}{CX}=\frac{W_C}{W_P}=\frac{15}{26}</math>. Therefore, <math>\frac{[\Delta PQR]}{[\Delta ABC]} = \left( \frac{15}{26} \right)^2 = \frac{225}{676}</math>, and <math>m+n=\boxed{901}</math>. |
+ | |||
+ | == Solution 2 == | ||
+ | First draw <math>\overline{CP}</math> and extend it so that it meets with <math>\overline{AB}</math> at point <math>X</math>. | ||
+ | |||
+ | [asy] size(10cm); pair A,B,C,D,E,X,P,Q,R; A=(0,0); B=(8,0); C=(1.9375,3.4994); D=(3.6696,2.4996); E=(1.4531,2.6246); X=(4.3636,0); P=(2.9639,2.0189); Q=(1.8462,0); R=(6.4615,0); dot(A); dot(B); dot(C); dot(D); dot(E); dot(X); dot(P); dot(Q); dot(R); label("<math>A</math>",A,WSW); label("<math>B</math>",B,ESE); label("<math>C</math>",C,NNW); label("<math>D</math>",D,NE); label("<math>E</math>",E,WNW); label("<math>X</math>",X,SSE); label("<math>P</math>",P,NNE); label("<math>Q</math>",Q,SSW); label("<math>R</math>",R,SE); draw(A--B--C--cycle); draw(P--Q--R--cycle); draw(A--D); draw(B--E); draw(C--X); [/asy] | ||
+ | |||
+ | We have that <math>[ABC]=\frac{1}{2}\cdot AC \cdot BC\sin{C}=\frac{1}{2}\cdot 4\cdot {7}\sin{C}=14\sin{C}</math> | ||
+ | |||
+ | By Ceva's, <cmath>3\cdot{\frac{2}{5}}\cdot{\frac{BX}{AX}}=1\implies BX=\frac{5\cdot AX}{6}</cmath> That means that <cmath> \frac{11\cdot {AX}}{6}=8\implies AX=\frac{48}{11} \ \text{and} \ BX=\frac{40}{11}</cmath> | ||
+ | |||
+ | Now we apply mass points. Assume WLOG that <math>W_{A}=1</math>. That means that | ||
+ | |||
+ | <cmath>W_{C}=3, W_{B}=\frac{6}{5}, W_{X}=\frac{11}{5}, W_{D}=\frac{21}{5}, W_{E}=4, W_{P}=\frac{26}{5}</cmath> | ||
+ | |||
+ | Notice now that <math>\triangle{PBQ}</math> is similar to <math>\triangle{EBA}</math>. Therefore, | ||
+ | |||
+ | <cmath>\frac{PQ}{EA}=\frac{PB}{EB}\implies \frac{PQ}{3}=\frac{10}{13}\implies PQ=\frac{30}{13}</cmath> | ||
+ | |||
+ | Also, <math>\triangle{PRA}</math> is similar to <math>\triangle{DBA}</math>. Therefore, | ||
+ | |||
+ | <cmath>\frac{PA}{DA}=\frac{PR}{DB}\implies \frac{21}{26}=\frac{PR}{5}\implies PR=\frac{105}{26}</cmath> | ||
+ | |||
+ | Because <math>\triangle{PQR}</math> is similar to <math>\triangle{CAB}</math>, <math>\angle{C}=\angle{P}</math>. | ||
+ | |||
+ | As a result, <math>[PQR]=\frac{1}{2}\cdot PQ \cdot PR \sin{C}=\frac{1}{2}\cdot \frac{30}{13}\cdot \frac{105}{26}\sin{P}=\frac{1575}{338}\sin{C}</math>. | ||
+ | |||
+ | Therefore, <cmath>\frac{[PQR]}{[ABC]}=\frac{\frac{1575}{338}\sin{C}}{14\sin{C}}=\frac{225}{676}\implies 225+676=\boxed{901}</cmath> | ||
== See also == | == See also == | ||
{{AIME box|year=2002|n=II|num-b=12|num-a=14}} | {{AIME box|year=2002|n=II|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:42, 12 September 2015
Contents
Problem
In triangle point is on with and point is on with and and and intersect at Points and lie on so that is parallel to and is parallel to It is given that the ratio of the area of triangle to the area of triangle is where and are relatively prime positive integers. Find .
Solution 1
Let be the intersection of and .
Since and , and . So , and thus, .
Using mass points:
WLOG, let .
Then:
.
.
.
.
Thus, . Therefore, , and .
Solution 2
First draw and extend it so that it meets with at point .
[asy] size(10cm); pair A,B,C,D,E,X,P,Q,R; A=(0,0); B=(8,0); C=(1.9375,3.4994); D=(3.6696,2.4996); E=(1.4531,2.6246); X=(4.3636,0); P=(2.9639,2.0189); Q=(1.8462,0); R=(6.4615,0); dot(A); dot(B); dot(C); dot(D); dot(E); dot(X); dot(P); dot(Q); dot(R); label("",A,WSW); label("",B,ESE); label("",C,NNW); label("",D,NE); label("",E,WNW); label("",X,SSE); label("",P,NNE); label("",Q,SSW); label("",R,SE); draw(A--B--C--cycle); draw(P--Q--R--cycle); draw(A--D); draw(B--E); draw(C--X); [/asy]
We have that
By Ceva's, That means that
Now we apply mass points. Assume WLOG that . That means that
Notice now that is similar to . Therefore,
Also, is similar to . Therefore,
Because is similar to , .
As a result, .
Therefore,
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.