Difference between revisions of "2007 AMC 10A Problems/Problem 17"

m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Suppose that <math>m</math> and <math>n</math> are positive [[integer]]s such that <math>75m = n^{3}</math>. What is the minimum possible value of <math>m + n</math>?
+
Suppose that <math>m</math> and <math>n</math> are positive [[integer]]s such that <math>75m = n^{3}</math>. What is a minimum possible value of <math>m + n</math>?
  
 
<math>\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700</math>
 
<math>\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700</math>

Revision as of 11:32, 30 August 2015

Problem

Suppose that $m$ and $n$ are positive integers such that $75m = n^{3}$. What is a minimum possible value of $m + n$?

$\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700$

Solution

$3 \cdot 5^2m$ must be a perfect cube, so each power of a prime in the factorization for $3 \cdot 5^2m$ must be divisible by $3$. Thus the minimum value of $m$ is $3^2 \cdot 5 = 45$, which makes $n = \sqrt[3]{3^3 \cdot 5^3} = 15$. These sum to $60\ \mathrm{(D)}$.

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png