Difference between revisions of "1972 USAMO Problems/Problem 4"

Line 14: Line 14:
 
We cross multiply to get <math>a\sqrt[3]{4}+b\sqrt[3]{2}+c=2d+e\sqrt[3]{4}+f\sqrt[3]{2}</math>. It's not hard to show that, since <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, and <math>f</math> are positive integers, then <math>a=e</math>, <math>b=f</math>, and <math>c=2d</math>.
 
We cross multiply to get <math>a\sqrt[3]{4}+b\sqrt[3]{2}+c=2d+e\sqrt[3]{4}+f\sqrt[3]{2}</math>. It's not hard to show that, since <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math>, <math>e</math>, and <math>f</math> are positive integers, then <math>a=e</math>, <math>b=f</math>, and <math>c=2d</math>.
  
{{solution}}
+
 
  
 
==See Also==
 
==See Also==

Revision as of 18:45, 28 August 2015

Problem

Let $R$ denote a non-negative rational number. Determine a fixed set of integers $a,b,c,d,e,f$, such that for every choice of $R$,

$\left|\frac{aR^2+bR+c}{dR^2+eR+f}-\sqrt[3]{2}\right|<|R-\sqrt[3]{2}|$

Solution

Note that when $R$ approaches $\sqrt[3]{2}$, $\frac{aR^2+bR+c}{dR^2+eR+f}$ must also approach $\sqrt[3]{2}$ for the given inequality to hold. Therefore

\[\lim_{R\rightarrow \sqrt[3]{2}} \frac{aR^2+bR+c}{dR^2+eR+f}=\sqrt[3]{2}\]

which happens if and only if

\[\frac{a\sqrt[3]{4}+b\sqrt[3]{2}+c}{d\sqrt[3]{4}+e\sqrt[3]{2}+f}=\sqrt[3]{2}\]

We cross multiply to get $a\sqrt[3]{4}+b\sqrt[3]{2}+c=2d+e\sqrt[3]{4}+f\sqrt[3]{2}$. It's not hard to show that, since $a$, $b$, $c$, $d$, $e$, and $f$ are positive integers, then $a=e$, $b=f$, and $c=2d$.


See Also

1972 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png