Difference between revisions of "1982 AHSME Problems/Problem 14"
LOTRFan123 (talk | contribs) (Created page with "Solution: Since <math>GP</math> is 15, <math>AP</math> is 75, and <math>\angle{AGP}=90</math>, <math>AG=15\sqrt{24}</math>. Now drop an altitude from <math>N</math> to <mat...") |
LOTRFan123 (talk | contribs) |
||
Line 1: | Line 1: | ||
− | Solution: | + | <math>\bold{1982 AHSME Problems/Problem 14}</math> |
+ | |||
+ | <math>\bold{Problem 14:}</math> | ||
+ | |||
+ | In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length | ||
+ | |||
+ | [asy] size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("<math>A</math>", A, W); label("<math>B</math>", B, SE); label("<math>C</math>", C, NE); label("<math>D</math>", D, dir(0)); label("<math>P</math>", P, S); label("<math>N</math>", N, S); label("<math>O</math>", O, S); label("<math>E</math>", E, dir(120)); label("<math>F</math>", F, NE); label("<math>G</math>", G, dir(100));[/asy] | ||
+ | |||
+ | <math>\bold{Solution:}</math> | ||
Since <math>GP</math> is 15, <math>AP</math> is 75, and <math>\angle{AGP}=90</math>, <math>AG=15\sqrt{24}</math>. | Since <math>GP</math> is 15, <math>AP</math> is 75, and <math>\angle{AGP}=90</math>, <math>AG=15\sqrt{24}</math>. | ||
Now drop an altitude from <math>N</math> to <math>AG</math> at point <math>H</math>. <math>AN=45</math>, and since <math>\triangle{AGP}</math> is similar to <math>\triangle{AHN}</math>. <math>NH=9</math>. <math>NE=NF=15</math> so by Pythagorean Theorem, <math>EH=HF=12</math>. Thus <math>EF=\boxed{24}</math>. <math>\boxed{C}</math> | Now drop an altitude from <math>N</math> to <math>AG</math> at point <math>H</math>. <math>AN=45</math>, and since <math>\triangle{AGP}</math> is similar to <math>\triangle{AHN}</math>. <math>NH=9</math>. <math>NE=NF=15</math> so by Pythagorean Theorem, <math>EH=HF=12</math>. Thus <math>EF=\boxed{24}</math>. <math>\boxed{C}</math> |
Revision as of 13:01, 22 August 2015
In the adjoining figure, points and lie on line segment , and , and are diameters of circle , and , respectively. Circles , and all have radius and the line is tangent to circle at . If intersects circle at points and , then chord has length
[asy] size(250); defaultpen(fontsize(10)); pair A=origin, O=(1,0), B=(2,0), N=(3,0), C=(4,0), P=(5,0), D=(6,0), G=tangent(A,P,1,2), E=intersectionpoints(A--G, Circle(N,1))[0], F=intersectionpoints(A--G, Circle(N,1))[1]; draw(Circle(O,1)^^Circle(N,1)^^Circle(P,1)^^G--A--D, linewidth(0.7)); dot(A^^B^^C^^D^^E^^F^^G^^O^^N^^P); label("", A, W); label("", B, SE); label("", C, NE); label("", D, dir(0)); label("", P, S); label("", N, S); label("", O, S); label("", E, dir(120)); label("", F, NE); label("", G, dir(100));[/asy]
Since is 15, is 75, and , .
Now drop an altitude from to at point . , and since is similar to . . so by Pythagorean Theorem, . Thus .