Difference between revisions of "Abelian group"

Line 7: Line 7:
 
           For all <math>a,b,c</math> <math>\in</math> <math>S</math> and all operations <math>\bullet</math>, <math>(a\bullet b)\bullet c=a\bullet(b\bullet c)</math>.
 
           For all <math>a,b,c</math> <math>\in</math> <math>S</math> and all operations <math>\bullet</math>, <math>(a\bullet b)\bullet c=a\bullet(b\bullet c)</math>.
 
Identity Element
 
Identity Element
           There exists some <math>e \in S</math> such that <math>a \bullet e = e \bullet a</math>=<math>a</math>.
+
           There exists some <math>e \in S</math> such that <math>a \bullet e = e \bullet a = a</math>.
  
  

Revision as of 17:36, 12 August 2015

An abelian group is a group in which the group operation is commutative. For a group to be considered "abelian", it must meet several requirements.

Closure

         For all $a,b$ $\in$ $S$, and for all operations $\bullet$, $a\bullet b \in S$.

Associativity

         For all $a,b,c$ $\in$ $S$ and all operations $\bullet$, $(a\bullet b)\bullet c=a\bullet(b\bullet c)$.

Identity Element

         There exists some $e \in S$ such that $a \bullet e = e \bullet a = a$.


This article is a stub. Help us out by expanding it.