Difference between revisions of "2015 USAMO Problems/Problem 4"
m (Aesthetic Improvement, added problem) |
15Pandabears (talk | contribs) m (→Solution) |
||
Line 3: | Line 3: | ||
===Solution=== | ===Solution=== | ||
− | According to the given, f(x-a)+f(x+0.5a)=f(x-0.5a)+f(x), where x and a are rational. Likewise f(x-0.5a)+f(x+a)=f(x+0.5a)+f(x). Hence f(x+a)-f(x)= f(x)-f(x-a), namely 2f(x)=f(x-a)+f(x+a). Let f(0)=C, then consider F(x)=f(x)-C, where F(0)=0 | + | According to the given, <math>f(x-a)+f(x+0.5a)=f(x-0.5a)+f(x)</math>, where <math>x</math> and <math>a</math> are rational. Likewise, <math>f(x-0.5a)+f(x+a)=f(x+0.5a)+f(x)</math>. Hence <math>f(x+a)-f(x)= f(x)-f(x-a)</math>, namely <math>2f(x)=f(x-a)+f(x+a)</math>. Let <math>f(0)=C</math>, then consider <math>F(x)=f(x)-C</math>, where <math>F(0)=0</math> and <math>2F(x)=F(x-a)+F(x+a)</math>. We have: |
− | F(2x)=F(x)+[F(x)-F(0)]=2F(x) | + | <cmath>F(2x)=F(x)+[F(x)-F(0)]=2F(x)</cmath> |
− | F(3x)=F(2x)+[F(2x)-F(x)]=3F(x) | + | <cmath>F(3x)=F(2x)+[F(2x)-F(x)]=3F(x)</cmath> |
− | + | By induction, <math>F(nx)=nF(x)</math> for all in.tegers <math>k</math>. | |
− | Therefore, for nonzero integer m, | + | Therefore, for nonzero integer <math>m</math>, <math>\frac{1}{m}F(mx)=F(x)</math>, namely <math>F\left(\frac{x}{m}\right)=\left(\frac{1}{m}\right)F(x)</math>. |
− | Hence F(n | + | Hence <math>F\left(\frac{n}{m}\right)=\left(\frac{n}{m}\right)F(1)</math>. Letting <math>F(1)=k</math>, we obtain <math>F(x)=kx</math>, where <math>k</math> is the slope of the linear functions, and <math>f(x)=kx+C</math>. |
Revision as of 16:32, 9 August 2015
Problem
Find all functions such thatfor all rational numbers that form an arithmetic progression. ( is the set of all rational numbers.)
Solution
According to the given, , where and are rational. Likewise, . Hence , namely . Let , then consider , where and . We have:
By induction, for all in.tegers . Therefore, for nonzero integer , , namely . Hence . Letting , we obtain , where is the slope of the linear functions, and .