Difference between revisions of "1986 AHSME Problems/Problem 28"
(→Problem) |
Quinna nyc (talk | contribs) |
||
Line 30: | Line 30: | ||
− | To solve the problem, we compute the area of regular pentagon <math>ABCDE</math> in two different ways. First, we can divide regular pentagon <math>ABCDE</math> into five congruent triangles. unitsize(2 cm); | + | To solve the problem, we compute the area of regular pentagon <math>ABCDE</math> in two different ways. First, we can divide regular pentagon <math>ABCDE</math> into five congruent triangles. |
+ | [asy] | ||
+ | unitsize(2 cm); | ||
− | Next, we divide regular pentagon ABCDE into triangles ABC, ACD, and ADE. unitsize(2 cm);pair A, B, C, D, E, O, P, Q, R;A = dir(90);B = dir(90 - 360/5);C = dir(90 - 2*360/5);D = dir(90 - 3*360/5);E = | + | pair A, B, C, D, E, O, P, Q, R; |
+ | |||
+ | A = dir(90); | ||
+ | B = dir(90 - 360/5); | ||
+ | C = dir(90 - 2*360/5); | ||
+ | D = dir(90 - 3*360/5); | ||
+ | E = dir(90 - 4*360/5); | ||
+ | O = (0,0); | ||
+ | P = (C + D)/2; | ||
+ | Q = (A + reflect(B,C)*(A))/2; | ||
+ | R = (A + reflect(D,E)*(A))/2; | ||
+ | |||
+ | draw((2*R - E)--D--C--(2*Q - B)); | ||
+ | draw(A--P); | ||
+ | draw(A--Q); | ||
+ | draw(A--R); | ||
+ | draw(B--A--E); | ||
+ | draw((O--B),dashed); | ||
+ | draw((O--C),dashed); | ||
+ | draw((O--D),dashed); | ||
+ | draw((O--E),dashed); | ||
+ | |||
+ | label("<math>A</math>", A, N); | ||
+ | label("<math>B</math>", B, dir(0)); | ||
+ | label("<math>C</math>", C, SE); | ||
+ | label("<math>D</math>", D, SW); | ||
+ | label("<math>E</math>", E, W); | ||
+ | dot("<math>O</math>", O, NE); | ||
+ | label("<math>P</math>", P, S); | ||
+ | label("<math>Q</math>", Q, dir(0)); | ||
+ | label("<math>R</math>", R, W); | ||
+ | label("<math>1</math>", (O + P)/2, dir(0)); | ||
+ | [/asy] | ||
+ | If <math>s</math> is the side length of the regular pentagon, then each of the triangles <math>AOB</math>, <math>BOC</math>, <math>COD</math>, <math>DOE</math>, and <math>EOA</math> has base <math>s</math> and height 1, so the area of regular pentagon <math>ABCDE</math> is <math>5s/2</math>. | ||
+ | |||
+ | Next, we divide regular pentagon <math>ABCDE</math> into triangles <math>ABC</math>, <math>ACD</math>, and <math>ADE</math>. | ||
+ | [asy] | ||
+ | unitsize(2 cm); | ||
+ | |||
+ | pair A, B, C, D, E, O, P, Q, R; | ||
+ | |||
+ | A = dir(90); | ||
+ | B = dir(90 - 360/5); | ||
+ | C = dir(90 - 2*360/5); | ||
+ | D = dir(90 - 3*360/5); | ||
+ | E = dir(90 - 4*360/5); | ||
+ | O = (0,0); | ||
+ | P = (C + D)/2; | ||
+ | Q = (A + reflect(B,C)*(A))/2; | ||
+ | R = (A + reflect(D,E)*(A))/2; | ||
+ | |||
+ | draw((2*R - E)--D--C--(2*Q - B)); | ||
+ | draw(A--P); | ||
+ | draw(A--Q); | ||
+ | draw(A--R); | ||
+ | draw(B--A--E); | ||
+ | draw(A--C,dashed); | ||
+ | draw(A--D,dashed); | ||
+ | |||
+ | label("<math>A</math>", A, N); | ||
+ | label("<math>B</math>", B, dir(0)); | ||
+ | label("<math>C</math>", C, SE); | ||
+ | label("<math>D</math>", D, SW); | ||
+ | label("<math>E</math>", E, W); | ||
+ | dot("<math>O</math>", O, dir(0)); | ||
+ | label("<math>P</math>", P, S); | ||
+ | label("<math>Q</math>", Q, dir(0)); | ||
+ | label("<math>R</math>", R, W); | ||
+ | label("<math>1</math>", (O + P)/2, dir(0)); | ||
+ | [/asy] | ||
+ | Triangle <math>ACD</math> has base <math>s</math> and height <math>AP = AO + 1</math>. Triangle <math>ABC</math> has base <math>s</math> and height <math>AQ</math>. Triangle <math>ADE</math> has base <math>s</math> and height <math>AR</math>. Therefore, the area of regular pentagon <math>ABCDE</math> is also | ||
+ | <cmath>\frac{s}{2} (AO + AQ + AR + 1).</cmath> | ||
+ | Hence, | ||
+ | <cmath>\frac{s}{2} (AO + AQ + AR + 1) = \frac{5s}{2},</cmath> | ||
+ | which means <math>AO + AQ + AR + 1 = 5</math>, or <math>AO + AQ + AR = \boxed{4}</math>. The answer is (C). | ||
== See also == | == See also == |
Revision as of 15:38, 29 July 2015
Problem
is a regular pentagon. and are the perpendiculars dropped from onto extended and extended, respectively. Let be the center of the pentagon. If , then equals
To solve the problem, we compute the area of regular pentagon in two different ways. First, we can divide regular pentagon into five congruent triangles. [asy] unitsize(2 cm);
pair A, B, C, D, E, O, P, Q, R;
A = dir(90); B = dir(90 - 360/5); C = dir(90 - 2*360/5); D = dir(90 - 3*360/5); E = dir(90 - 4*360/5); O = (0,0); P = (C + D)/2; Q = (A + reflect(B,C)*(A))/2; R = (A + reflect(D,E)*(A))/2;
draw((2*R - E)--D--C--(2*Q - B)); draw(A--P); draw(A--Q); draw(A--R); draw(B--A--E); draw((O--B),dashed); draw((O--C),dashed); draw((O--D),dashed); draw((O--E),dashed);
label("", A, N); label("", B, dir(0)); label("", C, SE); label("", D, SW); label("", E, W); dot("", O, NE); label("", P, S); label("", Q, dir(0)); label("", R, W); label("", (O + P)/2, dir(0)); [/asy] If is the side length of the regular pentagon, then each of the triangles , , , , and has base and height 1, so the area of regular pentagon is .
Next, we divide regular pentagon into triangles , , and . [asy] unitsize(2 cm);
pair A, B, C, D, E, O, P, Q, R;
A = dir(90); B = dir(90 - 360/5); C = dir(90 - 2*360/5); D = dir(90 - 3*360/5); E = dir(90 - 4*360/5); O = (0,0); P = (C + D)/2; Q = (A + reflect(B,C)*(A))/2; R = (A + reflect(D,E)*(A))/2;
draw((2*R - E)--D--C--(2*Q - B)); draw(A--P); draw(A--Q); draw(A--R); draw(B--A--E); draw(A--C,dashed); draw(A--D,dashed);
label("", A, N); label("", B, dir(0)); label("", C, SE); label("", D, SW); label("", E, W); dot("", O, dir(0)); label("", P, S); label("", Q, dir(0)); label("", R, W); label("", (O + P)/2, dir(0)); [/asy] Triangle has base and height . Triangle has base and height . Triangle has base and height . Therefore, the area of regular pentagon is also Hence, which means , or . The answer is (C).
See also
1986 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by Problem 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.