Difference between revisions of "1967 AHSME Problems/Problem 32"

(Created page with "== Problem == In quadrilateral <math>ABCD</math> with diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> intersecting at <math>O</math>, <math>\overline{BO}=4</m...")
 
(Fixed problem statement.)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In quadrilateral <math>ABCD</math> with diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> intersecting at <math>O</math>, <math>\overline{BO}=4</math>, <math>\overline{AO}=8</math>, <math>\overline{OC}=3</math>, and <math>\overline{AB}=6</math>.  The length of <math>\overline{AD}</math> is:
+
In quadrilateral <math>ABCD</math> with diagonals <math>AC</math> and <math>BD</math>, intersecting at <math>O</math>, <math>BO=4</math>, <math>OD = 6</math>, <math>AO=8</math>, <math>OC=3</math>, and <math>AB=6</math>.  The length of <math>AD</math> is:
  
 
<math>\textbf{(A)}\ 9\qquad
 
<math>\textbf{(A)}\ 9\qquad

Revision as of 19:22, 23 June 2015

Problem

In quadrilateral $ABCD$ with diagonals $AC$ and $BD$, intersecting at $O$, $BO=4$, $OD = 6$, $AO=8$, $OC=3$, and $AB=6$. The length of $AD$ is:

$\textbf{(A)}\ 9\qquad \textbf{(B)}\ 10\qquad \textbf{(C)}\ 6\sqrt{3}\qquad \textbf{(D)}\ 8\sqrt{2}\qquad \textbf{(E)}\ \sqrt{166}$

Solution

$\fbox{E}$

See also

1967 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png