Difference between revisions of "2015 USAMO Problems/Problem 2"
Stephcurry (talk | contribs) m (→Solution) |
Stephcurry (talk | contribs) (→Solution) |
||
Line 41: | Line 41: | ||
Since <math>M</math> is the circumcenter of <math>\triangle XTS</math>, and <math>MT</math> is the circumradius, the expression <math>AM^2-MT^2</math> is the power of point <math>A</math> with respect to <math>(XTS)</math>. However, as <math>AX*AS</math> is also the power of point <math>A</math> with respect to <math>(XTS)</math>, this implies that <math>AM^2-MT^2=AX*AS</math>. <math>(2)</math> | Since <math>M</math> is the circumcenter of <math>\triangle XTS</math>, and <math>MT</math> is the circumradius, the expression <math>AM^2-MT^2</math> is the power of point <math>A</math> with respect to <math>(XTS)</math>. However, as <math>AX*AS</math> is also the power of point <math>A</math> with respect to <math>(XTS)</math>, this implies that <math>AM^2-MT^2=AX*AS</math>. <math>(2)</math> | ||
+ | |||
By <math>(2)</math>, <math>KM^2-KP^2 = \frac{1}{2}(AX*AS-AP^2)</math> | By <math>(2)</math>, <math>KM^2-KP^2 = \frac{1}{2}(AX*AS-AP^2)</math> | ||
Revision as of 23:14, 5 June 2015
Problem
Quadrilateral is inscribed in circle
with
and
. Let
be a variable point on segment
. Line
meets
again at
(other than
). Point
lies on arc
of
such that
is perpendicular to
. Let
denote the midpoint of chord
. As
varies on segment
, show that
moves along a circle.
Solution
Solution 1: Complex bash
WLOG, let the circle be the unit circle centered at the origin, , where
.
Let angle , which is an acute angle,
, then
.
Angle ,
.
Let
, then
.
The condition yields:
(E1)
Use identities ,
,
, we obtain
. (E1')
The condition that is on the circle yields
, namely
. (E2)
is the mid-point on the hypotenuse of triangle
, hence
, yielding
. (E3)
Expand (E3), using (E2) to replace with
, and using (E1') to replace
with
, and we obtain
, namely
, which is a circle centered at
with radius
.
Solution 2: Mostly synthetic
Let the midpoint of be
. We claim that
moves along a circle with radius
.
We will show that , which implies that
, and as
is fixed, this implies the claim.
by the median formula on triangle
.
by the median formula on triangle
.
.
As ,
from right triangle
.
By ,
.
Since is the circumcenter of
, and
is the circumradius, the expression
is the power of point
with respect to
. However, as
is also the power of point
with respect to
, this implies that
.
By ,
Finally, by AA similarity (
and
), so
.
By ,
, so
, which implies that
. Finally, this implies the desired result, so we are done.