Difference between revisions of "2015 USAMO Problems/Problem 2"
(→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
===Solution=== | ===Solution=== | ||
− | WLOG, let the circle be the unit circle centered at the origin, <math>A=(1,0) P=(1-a,b), Q=(1-a,-b)</math>, where (1-a)^2+b^2=1. Let angle <XAB=A, which is an acute angle, | + | WLOG, let the circle be the unit circle centered at the origin, <math>A=(1,0) P=(1-a,b), Q=(1-a,-b)</math>, where <math>(1-a)^2+b^2=1</math>. Let angle <XAB=A, which is an acute angle, <math>\tan{A}=t</math>, then <math>X=(1-a,at)</math>. |
Angle <BOS=2A, S=(-cos2A,sin2A). | Angle <BOS=2A, S=(-cos2A,sin2A). |
Revision as of 21:07, 21 May 2015
Problem
Quadrilateral is inscribed in circle with and . Let be a variable point on segment . Line meets again at (other than ). Point lies on arc of such that is perpendicular to . Let denote the midpoint of chord . As varies on segment , show that moves along a circle.
Solution
WLOG, let the circle be the unit circle centered at the origin, , where . Let angle <XAB=A, which is an acute angle, , then .
Angle <BOS=2A, S=(-cos2A,sin2A). Let M=(u,v), then T=(2u+cos2A, 2v-sin2A)
The condition TX perpendicular to AX yields (2v-sin2A-at)/(2u+cos2A+a-1)=cotA. (E1) Use identities (cosA)^2=1/(1+t^2), cos2A=2(cosA)^2-1= 2/(1+t^2) -1, sin2A=2sinAcosA=2t^2/(1+t^2), we obtain 2vt-at^2=2u+a. (E1')
The condition that T is on the circle yields (2u+cos2A)^2+ (2v-sin2A)^2=1, namely vsin2A-ucos2A=u^2+v^2. (E2)
M is the mid-point on the hypotenuse of triangle STX, hence MS=MX, yielding (u+cos2A)^2+(v-sin2A)^2=(u+a-1)^2+(v-at)^2. (E3)
Expand (E3), using (E2) to replace 2(vsin2A-ucos2A) with 2(u^2+v^2), and using (E1') to replace a(-2vt+at^2) with -a(2u+a), and we obtain u^2-u-a+v^2=0, namely (u-1/2)^2+v^2=a+1/4, which is a circle centered at (1/2,0) with radius r=sqrt(a+1/4).