Difference between revisions of "1951 AHSME Problems/Problem 17"

(Solution)
(Solution)
 
Line 14: Line 14:
 
<math>\textbf{(C)}\ x = 5y\implies \frac{x}{y}=5</math>
 
<math>\textbf{(C)}\ x = 5y\implies \frac{x}{y}=5</math>
  
<math> \textbf{(D)}\ \frac {x}{y} = \sqrt {3}\implies \frac {x}{y} = \sqrt {3}</math>
+
<math> \textbf{(E)}\ \frac {x}{y} = \sqrt {3}\implies \frac {x}{y} = \sqrt {3}</math>
  
 
As we can see, the only equation without a "standard" form is <math>\textbf{(D)}</math>, so our answer is <math>\boxed{\textbf{(D)}\ 3x + y = 10}</math>
 
As we can see, the only equation without a "standard" form is <math>\textbf{(D)}</math>, so our answer is <math>\boxed{\textbf{(D)}\ 3x + y = 10}</math>

Latest revision as of 19:18, 30 April 2015

Problem

Indicate in which one of the following equations $y$ is neither directly nor inversely proportional to $x$:

$\textbf{(A)}\ x + y = 0 \qquad\textbf{(B)}\ 3xy = 10 \qquad\textbf{(C)}\ x = 5y \qquad\textbf{(D)}\ 3x + y = 10$ $\textbf{(E)}\ \frac {x}{y} = \sqrt {3}$

Solution

Notice that for any directly or inversely proportional values, it can be expressed as $\frac{x}{y}=k$ or $xy=k$. Now we try to convert each into its standard form counterpart.

$\textbf{(A)}\ x + y = 0\implies \frac{x}{y}=-1$

$\textbf{(B)}\ 3xy = 10\implies xy=\frac{10}{3}$

$\textbf{(C)}\ x = 5y\implies \frac{x}{y}=5$

$\textbf{(E)}\ \frac {x}{y} = \sqrt {3}\implies \frac {x}{y} = \sqrt {3}$

As we can see, the only equation without a "standard" form is $\textbf{(D)}$, so our answer is $\boxed{\textbf{(D)}\ 3x + y = 10}$

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png