Difference between revisions of "1951 AHSME Problems/Problem 17"

(Problem)
Line 2: Line 2:
 
Indicate in which one of the following equations <math> y</math> is neither directly nor inversely proportional to <math> x</math>:
 
Indicate in which one of the following equations <math> y</math> is neither directly nor inversely proportional to <math> x</math>:
  
<math> \textbf{(A)}\ x \plus{} y \equal{} 0 \qquad\textbf{(B)}\ 3xy \equal{} 10 \qquad\textbf{(C)}\ x \equal{} 5y \qquad\textbf{(D)}\ 3x \plus{} y \equal{} 10</math>
+
<math> \textbf{(A)}\ x + y = 0 \qquad\textbf{(B)}\ 3xy = 10 \qquad\textbf{(C)}\ x = 5y \qquad\textbf{(D)}\ 3x + y = 10</math>  
<math> \textbf{(E)}\ \frac {x}{y} \equal{} \sqrt {3}</math>
+
<math> \textbf{(E)}\ \frac {x}{y} = \sqrt {3}</math>
  
 
== Solution ==  
 
== Solution ==  

Revision as of 19:16, 30 April 2015

Problem

Indicate in which one of the following equations $y$ is neither directly nor inversely proportional to $x$:

$\textbf{(A)}\ x + y = 0 \qquad\textbf{(B)}\ 3xy = 10 \qquad\textbf{(C)}\ x = 5y \qquad\textbf{(D)}\ 3x + y = 10$ $\textbf{(E)}\ \frac {x}{y} = \sqrt {3}$

Solution

Notice that for any directly or inversely proportional values, it can be expressed as $\frac{x}{y}=k$ or $xy=k$. Now we try to convert each into its standard form counterpart.

$\textbf{(A)}\ x \plus{} y \equal{} 0\implies \frac{x}{y}=-1$ (Error compiling LaTeX. Unknown error_msg)

$\textbf{(B)}\ 3xy \equal{} 10\implies xy=\frac{10}{3}$ (Error compiling LaTeX. Unknown error_msg)

$\textbf{(C)}\ x \equal{} 5y\implies \frac{x}{y}=5$ (Error compiling LaTeX. Unknown error_msg)

$\textbf{(E)}\ \frac {x}{y} \equal{} \sqrt {3}\implies \frac {x}{y} \equal{} \sqrt {3}$ (Error compiling LaTeX. Unknown error_msg)

As we can see, the only equation without a "standard" form is $\textbf{(D)}$, so our answer is $\boxed{\textbf{(D)}\ 3x \plus{} y \equal{} 10}$ (Error compiling LaTeX. Unknown error_msg)

See Also

1951 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png