Difference between revisions of "2011 AMC 10B Problems/Problem 1"

(Solution)
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
First, simplify the fractions.
+
<math>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12} = \dfrac{4}{3} - \dfrac{3}{4} = \boxed{\dfrac{7}{12}\; \textbf{(C)}}</math>
 
 
<math>\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12}</math>
 
 
 
<math>\dfrac{12}{9} - \dfrac{9}{12} = \dfrac{4}{3} - \dfrac{3}{4} = \boxed{\dfrac{7}{12} \textbf{(C)}}</math>
 
 
 
{thequantumguy}
 
  
 
== See Also ==
 
== See Also ==

Revision as of 07:39, 1 April 2015

Problem

What is \[\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} ?\]

$\textbf{(A)}\ -1\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{147}{60}\qquad\textbf{(E)}\ \frac{43}{3}$

Solution

$\dfrac{2+4+6}{1+3+5} - \dfrac{1+3+5}{2+4+6} = \dfrac{12}{9} - \dfrac{9}{12} = \dfrac{4}{3} - \dfrac{3}{4} = \boxed{\dfrac{7}{12}\; \textbf{(C)}}$

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png