Difference between revisions of "1984 AIME Problems/Problem 12"

m (Solution: extra parens)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A [[function]] <math>f</math> is defined for all real numbers and satisfies <math>f(2+x)=f(2-x)</math> and <math>f(7+x)=f(7-x)</math> for all <math>x</math>. If <math>x=0</math> is a root for <math>f(x)=0</math>, what is the least number of roots <math>f(x)=0</math> must have in the interval <math>-1000\leq x \leq 1000</math>?
+
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>A [[function]] <math>f</math> is defined for all real numbers and satisfies <math>f(2+x)=f(2-x)</math> and <math>f(7+x)=f(7-x)</math> for all <math>x</math>. If <math>x=0</math> is a root for <math>f(x)=0</math>, what is the least number of roots <math>f(x)=0</math> must have in the interval <math>-1000\leq x \leq 1000</math>?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
  
 
== Solution ==
 
== Solution ==

Revision as of 17:53, 27 March 2015

Problem

A function $f$ is defined for all real numbers and satisfies $f(2+x)=f(2-x)$ and $f(7+x)=f(7-x)$ for all $x$. If $x=0$ is a root for $f(x)=0$, what is the least number of roots $f(x)=0$ must have in the interval $-1000\leq x \leq 1000$?

Solution

If $f(2+x)=f(2-x)$, then substituting $t=2+x$ gives $f(t)=f(4-t)$. Similarly, $f(t)=f(14-t)$. In particular, \[f(t)=f(14-t)=f(14-(4-t))=f(t+10)\]

Since $0$ is a root, all multiples of $10$ are roots, and anything congruent to $4\pmod{10}$ are also roots. To see that these may be the only integer roots, observe that the function \[f(x) = \sin \frac{\pi x}{10}\sin \frac{\pi (x-4)}{10}\] satisfies the conditions and has no other roots.

In the interval $-1000\leq x\leq 1000$, there are $201$ multiples of $10$ and $200$ numbers that are congruent to $4 \pmod{10}$, therefore the minimum number of roots is $\boxed{401}$.

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions