Difference between revisions of "2015 AIME II Problems/Problem 10"

(Create Page)
 
m (Add Solution Section)
Line 1: Line 1:
==Problem 10==
+
==Problem==
  
 
Call a permutation <math>a_1, a_2, \ldots, a_n</math> of the integers <math>1, 2, \ldots, n</math> ''quasi-increasing'' if <math>a_k \leq a_{k+1} + 2</math> for each <math>1 \leq k \leq n-1</math>. For example, 53421 and 14253 are quasi-increasing permutations of the integers <math>1, 2, 3, 4, 5</math>, but 45123 is not. Find the number of quasi-increasing permutations of the integers <math>1, 2, \ldots, 7</math>.
 
Call a permutation <math>a_1, a_2, \ldots, a_n</math> of the integers <math>1, 2, \ldots, n</math> ''quasi-increasing'' if <math>a_k \leq a_{k+1} + 2</math> for each <math>1 \leq k \leq n-1</math>. For example, 53421 and 14253 are quasi-increasing permutations of the integers <math>1, 2, 3, 4, 5</math>, but 45123 is not. Find the number of quasi-increasing permutations of the integers <math>1, 2, \ldots, 7</math>.
 +
 +
==Solution==

Revision as of 18:24, 26 March 2015

Problem

Call a permutation $a_1, a_2, \ldots, a_n$ of the integers $1, 2, \ldots, n$ quasi-increasing if $a_k \leq a_{k+1} + 2$ for each $1 \leq k \leq n-1$. For example, 53421 and 14253 are quasi-increasing permutations of the integers $1, 2, 3, 4, 5$, but 45123 is not. Find the number of quasi-increasing permutations of the integers $1, 2, \ldots, 7$.

Solution