Difference between revisions of "2015 AIME II Problems/Problem 3"
(→Solution) |
(→Solution 1) |
||
Line 7: | Line 7: | ||
\begin{array}{c|c} | \begin{array}{c|c} | ||
m & s(m)\\ | m & s(m)\\ | ||
− | 102 & 3 | + | 102 & 3 \\ |
− | 119 & 11 | + | 119 & 11\\ |
− | 136 & 10 | + | 136 & 10\\ |
− | 153 & 9 | + | 153 & 9\\ |
− | 170 & 8 | + | 170 & 8\\ |
− | 187 & 16 | + | 187 & 16\\ |
− | 204 & 6 | + | 204 & 6\\ |
− | 221 & 5 | + | 221 & 5\\ |
− | 238 & 13 | + | 238 & 13\\ |
− | 255 & 12 | + | 255 & 12\\ |
− | 272 & 11 | + | 272 & 11\\ |
− | 289 & 19 | + | 289 & 19\\ |
− | 306 & 9 | + | 306 & 9\\ |
− | 323 & 8 | + | 323 & 8\\ |
− | 340 & 7 | + | 340 & 7\\ |
− | 357 & 15 | + | 357 & 15\\ |
− | 374 & 14 | + | 374 & 14\\ |
− | 391 & 13 | + | 391 & 13\\ |
− | 408 & 12 | + | 408 & 12\\ |
− | 425 & 11 | + | 425 & 11\\ |
− | 442 & 10 | + | 442 & 10\\ |
− | 459 & 18 | + | 459 & 18\\ |
476 & 17 | 476 & 17 | ||
\end{array} | \end{array} |
Revision as of 13:01, 26 March 2015
Problem
Let be the least positive integer divisible by whose digits sum to . Find .
Solution 1
The three-digit integers divisible by , and their digit sum:
Thus the answer is .
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.