Difference between revisions of "Circumradius"
(→Proof) |
(→Formula for a Triangle) |
||
Line 4: | Line 4: | ||
==Formula for a Triangle== | ==Formula for a Triangle== | ||
− | Let <math>a, b</math> and <math>c</math> denote the triangle's three sides, and let <math>A</math> denote the area of the triangle. Then, the measure | + | Let <math>a, b</math> and <math>c</math> denote the triangle's three sides, and let <math>A</math> denote the area of the triangle. Then, the measure of the circumradius of the triangle is simply <math>R=\frac{abc}{4A}</math>. Also, <math>A=\frac{abc}{4R}</math> |
== Proof == | == Proof == |
Revision as of 17:44, 22 March 2015
This article is a stub. Help us out by expanding it.
The circumradius of a cyclic polygon is the radius of the cirumscribed circle of that polygon. For a triangle, it is the measure of the radius of the circle that circumscribes the triangle. Since every triangle is cyclic, every triangle has a circumscribed circle, or a circumcircle.
Contents
Formula for a Triangle
Let and denote the triangle's three sides, and let denote the area of the triangle. Then, the measure of the circumradius of the triangle is simply . Also,
Proof
We let , , , , and . We know that is a right angle because is the diameter. Also, because they both subtend arc . Therefore, by AA similarity, so we have or However, remember that area , so . Substituting this in gives us and then bash through algebra to get and we are done.
--Nosaj 19:39, 7 December 2014 (EST)
Formula for Circumradius
Where is the Circumradius, is the inradius, and , , and are the respective sides of the triangle. Note that this is similar to the previously mentioned formula; the reason being that .
Euler's Theorem for a Triangle
Let have circumradius and inradius . Let be the distance between the circumcenter and the incenter. Then we have