Difference between revisions of "2015 AIME I Problems/Problem 13"
(→Problem) |
(→Solution) |
||
Line 2: | Line 2: | ||
With all angles measured in degrees, the product <math>\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n</math>, where <math>m</math> and <math>n</math> are integers greater than 1. Find <math>m+n</math>. | With all angles measured in degrees, the product <math>\prod_{k=1}^{45} \csc^2(2k-1)^\circ=m^n</math>, where <math>m</math> and <math>n</math> are integers greater than 1. Find <math>m+n</math>. | ||
− | ==Solution== | + | ==Solution 1== |
Let <math>x = \cos 1^\circ + i \sin 1^\circ</math>. Then from the identity | Let <math>x = \cos 1^\circ + i \sin 1^\circ</math>. Then from the identity | ||
<cmath>\sin x = \frac{x - \frac{1}{x}}{2i} = \frac{x^2 - 1}{2 i x},</cmath> | <cmath>\sin x = \frac{x - \frac{1}{x}}{2i} = \frac{x^2 - 1}{2 i x},</cmath> | ||
Line 13: | Line 13: | ||
<cmath>\frac{1}{M} = \dfrac{1}{2^{90}}|1 - x^2| |1 - x^6| \dots |1 - x^{358}| = \dfrac{1}{2^{90}} |1^{90} + 1| = \dfrac{1}{2^{89}}.</cmath> | <cmath>\frac{1}{M} = \dfrac{1}{2^{90}}|1 - x^2| |1 - x^6| \dots |1 - x^{358}| = \dfrac{1}{2^{90}} |1^{90} + 1| = \dfrac{1}{2^{89}}.</cmath> | ||
It is easy to see that <math>M = 2^{89}</math> and that our answer is <math>2 + 89 = \boxed{91}</math>. | It is easy to see that <math>M = 2^{89}</math> and that our answer is <math>2 + 89 = \boxed{91}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let <math>p=\sin1\sin3\sin5...\sin89</math> | ||
+ | |||
+ | <cmath>=\sqrt{\sin1\sin3\sin5...\sin177\sin179}</cmath> | ||
+ | |||
+ | <cmath>=\sqrt{\frac{\sin1\sin2\sin3\sin4...\sin177\sin178\sin179}{\sin2\sin4\sin6\sin8...\sin176\sin178}}</cmath> | ||
+ | |||
+ | <cmath>=\sqrt{\frac{\sin1\sin2\sin3\sin4...\sin177\sin178\sin179}{(2\sin1\cos1)\cdot(2\sin2\cos2)\cdot(2\sin3\cos3)\cdot....\cdot(2\sin89\cos89)}}</cmath> | ||
+ | |||
+ | <cmath>=\sqrt{\frac{1}{2^{89}}\frac{\sin90\sin91\sin92\sin93...\sin177\sin178\sin179}{\cos1\cos2\cos3\cos4...\cos89}}</cmath> | ||
+ | |||
+ | <math>=\sqrt{\frac{1}{2^{89}}}</math> because of the identity <math>\sin(90+x)=\cos(x)</math> | ||
+ | |||
+ | we want <math>\frac{1}{p^2}=2^{89}</math> | ||
+ | |||
+ | Thus the answer is <math>2+89=091</math> | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2015|n=I|num-b=12|num-a=14}} | {{AIME box|year=2015|n=I|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:39, 21 March 2015
Contents
Problem
With all angles measured in degrees, the product , where and are integers greater than 1. Find .
Solution 1
Let . Then from the identity we deduce that (taking absolute values and noticing ) But because is the reciprocal of and because , if we let our product be then because is positive in the first and second quadrants. Now, notice that are the roots of Hence, we can write , and so It is easy to see that and that our answer is .
Solution 2
Let
because of the identity
we want
Thus the answer is
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.