Difference between revisions of "2015 AMC 10B Problems/Problem 12"
(Created page with "==Problem== For how many integers <math>x</math> is the point <math>(x, -x)</math> inside or on the circle of radius 10 centered at <math>(5, 5)</math>? <math>\textbf{(A)} 11...") |
|||
Line 2: | Line 2: | ||
For how many integers <math>x</math> is the point <math>(x, -x)</math> inside or on the circle of radius 10 centered at <math>(5, 5)</math>? | For how many integers <math>x</math> is the point <math>(x, -x)</math> inside or on the circle of radius 10 centered at <math>(5, 5)</math>? | ||
− | <math>\textbf{(A)} 11\qquad \textbf{(B)} 12\qquad \textbf{(C)} 13\qquad \textbf{(D)} 14\qquad \textbf{(E)} 15</math> | + | <math>\textbf{(A) }11\qquad \textbf{(B) }12\qquad \textbf{(C) }13\qquad \textbf{(D) }14\qquad \textbf{(E) }15</math> |
==Solution== | ==Solution== | ||
The equation of the circle is <math>(x-5)^2+(y-5)^2=100</math>. Plugging in the given conditions we have <math>(x-5)^2+(-x-5)^2 \leq 100</math>. Expanding gives: <math>x^2-10x+25+x^2+10x+25\leq 100</math>, which simplifies to | The equation of the circle is <math>(x-5)^2+(y-5)^2=100</math>. Plugging in the given conditions we have <math>(x-5)^2+(-x-5)^2 \leq 100</math>. Expanding gives: <math>x^2-10x+25+x^2+10x+25\leq 100</math>, which simplifies to | ||
<math>x^2\leq 25</math> and therefore | <math>x^2\leq 25</math> and therefore | ||
− | <math>x\leq 5</math> or <math>x\geq -5</math>. So <math>x</math> ranges from <math>-5</math> to <math>5</math>, for a total of <math>\boxed{\ | + | <math>x\leq 5</math> or <math>x\geq -5</math>. So <math>x</math> ranges from <math>-5</math> to <math>5</math>, for a total of <math>\boxed{\mathbf{(A)}\ 11}</math> values. |
==See Also== | ==See Also== | ||
{{AMC10 box|year=2015|ab=B|num-b=11|num-a=13}} | {{AMC10 box|year=2015|ab=B|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:48, 6 March 2015
Problem
For how many integers is the point inside or on the circle of radius 10 centered at ?
Solution
The equation of the circle is . Plugging in the given conditions we have . Expanding gives: , which simplifies to and therefore or . So ranges from to , for a total of values.
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.