Difference between revisions of "2015 AMC 12B Problems/Problem 16"
Pi over two (talk | contribs) (→Problem) |
Pi over two (talk | contribs) (→Problem) |
||
Line 2: | Line 2: | ||
A regular hexagon with sides of length 6 has an isosceles triangle attached to each side. Each of these triangles has two sides of length 8. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid? | A regular hexagon with sides of length 6 has an isosceles triangle attached to each side. Each of these triangles has two sides of length 8. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid? | ||
− | <math>\textbf{(A)}\; | + | <math>\textbf{(A)}\; 18 \qquad\textbf{(B)}\; 162 \qquad\textbf{(C)}\; 36\sqrt{21} \qquad\textbf{(D)}\; 18\sqrt{138} \qquad\textbf{(E)}\; 54\sqrt{21}</math> |
==Solution== | ==Solution== |
Revision as of 23:15, 3 March 2015
Problem
A regular hexagon with sides of length 6 has an isosceles triangle attached to each side. Each of these triangles has two sides of length 8. The isosceles triangles are folded to make a pyramid with the hexagon as the base of the pyramid. What is the volume of the pyramid?
Solution
See Also
2015 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.