Difference between revisions of "2015 AMC 12B Problems"
Pi over two (talk | contribs) (→Problem 12) |
Pi over two (talk | contribs) (→Problem 14) |
||
Line 90: | Line 90: | ||
==Problem 14== | ==Problem 14== | ||
+ | A circle of radius 2 is centered at <math>A</math>. An equilateral triangle with side 4 has a vertex at <math>A</math>. What is the difference between the area of the region that lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle? | ||
<math>\textbf{(A)}\; ? \qquad\textbf{(B)}\; ? \qquad\textbf{(C)}\; ? \qquad\textbf{(D)}\; ? \qquad\textbf{(E)}\; ?</math> | <math>\textbf{(A)}\; ? \qquad\textbf{(B)}\; ? \qquad\textbf{(C)}\; ? \qquad\textbf{(D)}\; ? \qquad\textbf{(E)}\; ?</math> |
Revision as of 12:45, 3 March 2015
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
What is the value of ?
Problem 2
Marie does three equally time-consuming tasks in a row without taking breaks. She begins the first task at 1:00 PM and finishes the second task at 2:40 PM. When does she finish the third task?
Problem 3
Isaac has written down one integer two times and another integer three times. The sum of the five numbers is 100, and one of the numbers is 28. What is the other number?
Problem 4
David, Hikmet, Jack, Marta, Rand, and Todd were in a 12-person race with 6 other people. Rand finished 6 places ahead of Hikmet. Marta finished 1 place behind Jack. David finished 2 places behind Hikmet. Jack finished 2 places behind Todd. Todd finished 1 place behind Rand. Marta finished in 6th place. Who finished in 8th place?
Problem 5
The Tigers beat the Sharks 2 out of the 3 times they played. They then played more times, and the Sharks ended up winning at least 95% of all the games played. What is the minimum possible value for ?
Problem 6
Back in 1930, Tillie had to memorize her multiplication facts from to . The multiplication table she was given had rows and columns labeled with the factors, and the products formed the body of the table. To the nearest hundredth, what fraction of the numbers in the body of the table are odd?
Problem 7
A regular 15-gon has lines of symmetry, and the smallest positive angle for which it has rotational symmetry is degrees. What is ?
Problem 8
What is the value of ?
Problem 9
Larry and Julius are playing a game, taking turns throwing a ball at a bottle sitting on a ledge. Larry throws first. The winner is the first person to knock the bottle off the ledge. At each turn the probability that a player knocks the bottle off the ledge is , independently of what has happened before. What is the probability that Larry wins the game?
Problem 10
How many noncongruent integer-sided triangles with positive area and perimeter less than 15 are neither equilateral, isosceles, nor right triangles?
Problem 11
The line forms a triangle with the coordinate axes. What is the sum of the lengths of the altitudes of this triangle?
Problem 12
Let , , and be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation ?
Problem 13
Problem 14
A circle of radius 2 is centered at . An equilateral triangle with side 4 has a vertex at . What is the difference between the area of the region that lies inside the circle but outside the triangle and the area of the region that lies inside the triangle but outside the circle?
Problem 15
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose that Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of ?
Problem 22
Six chairs are evenly spaced around a circular table. One person is seated in each chair. Each person gets up and sits down in a chair that is not the same chair and is not adjacent to the chair he or she originally occupied, so that again one person is seated in each chair. In how many ways can this be done?
Problem 23
A rectangular box measures , where , , and are integers and . The volume and the surface area of the box are numerically equal. How many ordered triples are possible?
Problem 24
Four circles, no two of which are congruent, have centers at , , , and , and points and lie on all four circles. The radius of circle is times the radius of circle , and the radius of circle is times the radius of circle . Furthermore, and . Let be the midpoint of . What is ?
Problem 25
See also
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.