Difference between revisions of "2014 AMC 12B Problems/Problem 16"
m |
Pi over two (talk | contribs) (→Problem) |
||
Line 3: | Line 3: | ||
Let <math>P</math> be a cubic polynomial with <math>P(0) = k</math>, <math>P(1) = 2k</math>, and <math>P(-1) = 3k</math>. What is <math>P(2) + P(-2)</math> ? | Let <math>P</math> be a cubic polynomial with <math>P(0) = k</math>, <math>P(1) = 2k</math>, and <math>P(-1) = 3k</math>. What is <math>P(2) + P(-2)</math> ? | ||
− | <math> \textbf{(A)}\ 0\qquad\textbf{(B)}\ k\qquad\textbf{(C)}\ 6k\qquad\textbf{(D) | + | <math> \textbf{(A)}\ 0\qquad\textbf{(B)}\ k\qquad\textbf{(C)}\ 6k\qquad\textbf{(D)}\ 7k\qquad\textbf{(E)}\ 14k </math> |
==Solution== | ==Solution== |
Revision as of 09:15, 3 March 2015
Problem
Let be a cubic polynomial with , , and . What is ?
Solution
Let . Plugging in for , we find , and plugging in and for , we obtain the following equations: Adding these two equations together, we get If we plug in and in for , we find that Multiplying the third equation by and adding gives us our desired result, so
See also
2014 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.