Difference between revisions of "2010 AMC 12A Problems/Problem 1"

(See also)
m (Solution)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
<math>20-2010+201+2010-201+20=20+20=40; \boxed{\textbf{(C)}}</math>.
+
<math>20-2010+201+2010-201+20=20+20=\boxed{\textbf{(C)}\,40}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 16:18, 16 February 2015

Problem

What is $\left(20-\left(2010-201\right)\right)+\left(2010-\left(201-20\right)\right)$?

$\textbf{(A)}\ -4020 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 40 \qquad \textbf{(D)}\ 401 \qquad \textbf{(E)}\ 4020$

Solution

$20-2010+201+2010-201+20=20+20=\boxed{\textbf{(C)}\,40}$.

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png