Difference between revisions of "Mock AIME 3 2006-2007 Problems/Problem 3"

(Created page with " == Problem == Let <math>P(x) = 2x^{59} - x^2 - x - 6</math>. If <math>Q(x)</math> is a polynomial whose roots are the 59th powers of the roots of <math>P(x)</math>, then find t...")
 
(Solution)
 
Line 7: Line 7:
  
  
Let <math>a_1,a_2,\ldots,a_{59}</math> denote the roots of P. Then, <math>\sum_{i} a_i = 0, and \sum_{i\neq j} = 0</math>. Therefore, <math>\sum_{i} a_i^2 = 0</math>.  
+
Let <math>a_1,a_2,\ldots,a_{59}</math> denote the roots of P. Then, <math>\sum_{i} a_i = 0</math>, and <math>\sum_{i\neq j} = 0</math>. Therefore, <math>\sum_{i} a_i^2 = 0</math>.  
  
Denote<math> S_n(a) = \sum_{i} a_i^n</math>. So <math>S_1(a) = 0, S_2(a) = 0</math>. To find <math>S_{59}(a)</math>, use Newton's recursive sums:  
+
Denote <math> S_n(a) = \sum_{i} a_i^n</math>. So <math>S_1(a) = 0, S_2(a) = 0</math>. To find <math>S_{59}(a)</math>, use Newton's recursive sums:  
  
 
<math>S_{59}(a)\cdot 2 + S_{58}(a)\cdot 0 + S_{57}(a)\cdot 0 + \cdots + S_2(a)\cdot(-1) + S_1(a)\cdot(-1) + 59\cdot(-6) = 0</math>.  
 
<math>S_{59}(a)\cdot 2 + S_{58}(a)\cdot 0 + S_{57}(a)\cdot 0 + \cdots + S_2(a)\cdot(-1) + S_1(a)\cdot(-1) + 59\cdot(-6) = 0</math>.  
  
 
Solving, we get <math>S_{59}(a) = 59\cdot 3 = \boxed{177}</math>.
 
Solving, we get <math>S_{59}(a) = 59\cdot 3 = \boxed{177}</math>.

Latest revision as of 22:38, 15 February 2015

Problem

Let $P(x) = 2x^{59} - x^2 - x - 6$. If $Q(x)$ is a polynomial whose roots are the 59th powers of the roots of $P(x)$, then find the sum of the roots of $Q(x)$.


Solution

Let $a_1,a_2,\ldots,a_{59}$ denote the roots of P. Then, $\sum_{i} a_i = 0$, and $\sum_{i\neq j} = 0$. Therefore, $\sum_{i} a_i^2 = 0$.

Denote $S_n(a) = \sum_{i} a_i^n$. So $S_1(a) = 0, S_2(a) = 0$. To find $S_{59}(a)$, use Newton's recursive sums:

$S_{59}(a)\cdot 2 + S_{58}(a)\cdot 0 + S_{57}(a)\cdot 0 + \cdots + S_2(a)\cdot(-1) + S_1(a)\cdot(-1) + 59\cdot(-6) = 0$.

Solving, we get $S_{59}(a) = 59\cdot 3 = \boxed{177}$.