Difference between revisions of "2015 AMC 12A Problems/Problem 21"
m (→Solution) |
m (→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | We can graph the ellipse by setting <math>x = 0</math> and finding possible values for <math>y</math>, and vice versa. The points where the ellipse intersects the coordinate axes are <math>(0, 1), (0, -1), (4, 0)</math>, and <math>(-4, 0)</math>. Recall that the two foci lie on the major axis of the ellipse and are a distance of <math>c</math> away from the center of the ellipse, where <math>c^2 = a^2 - b^2</math>, with <math>a</math> being the length of the major (longer) axis and <math>b</math> being the minor (shorter) axis of the ellipse. We have that <math>c^2 = 4^2 - 1^2 \implies</math> <math>c^2 = 15 \implies c = \pm \sqrt{15}</math>. Hence, the coordinates of both of our foci are <math>(0, \sqrt{15})</math> and <math>(0, -\sqrt{15})</math>. In order for a circle to pass through both of these foci, we must have that the center of this circle lies on the y-axis. | + | We can graph the ellipse by seeing that the center is <math>(0, 0)</math>, setting <math>x = 0</math>, and finding possible values for <math>y</math>, and vice versa. The points where the ellipse intersects the coordinate axes are <math>(0, 1), (0, -1), (4, 0)</math>, and <math>(-4, 0)</math>. Recall that the two foci lie on the major axis of the ellipse and are a distance of <math>c</math> away from the center of the ellipse, where <math>c^2 = a^2 - b^2</math>, with <math>a</math> being the length of the major (longer) axis and <math>b</math> being the minor (shorter) axis of the ellipse. We have that <math>c^2 = 4^2 - 1^2 \implies</math> <math>c^2 = 15 \implies c = \pm \sqrt{15}</math>. Hence, the coordinates of both of our foci are <math>(0, \sqrt{15})</math> and <math>(0, -\sqrt{15})</math>. In order for a circle to pass through both of these foci, we must have that the center of this circle lies on the y-axis. |
The minimum possible value of <math>r</math> belongs to the circle whose diameter's endpoints are the foci of this ellipse, so <math>a = \sqrt{15}</math>. The value for <math>b</math> is achieved when the circle passes through the foci and only three points on the ellipse, which is possible when the circle touches <math>(0, 1)</math> or <math>(0, -1)</math>. Which point we use does not change what value of <math>b</math> is attained, so we use <math>(0, -1)</math>. Here, we must find the point <math>(0, y)</math> such that the distance from <math>(0, y)</math> to both foci and <math>(0, -1)</math> is the same. Now, we have the two following equations. <cmath>(\sqrt{15})^2 + (y)^2 = b^2</cmath> <cmath>y + 1 = b \implies y = b - 1</cmath> Substituting for <math>y</math>, we have that <cmath>15 + (b - 1)^2 = b^2 \implies -2b + 16 = 0.</cmath> | The minimum possible value of <math>r</math> belongs to the circle whose diameter's endpoints are the foci of this ellipse, so <math>a = \sqrt{15}</math>. The value for <math>b</math> is achieved when the circle passes through the foci and only three points on the ellipse, which is possible when the circle touches <math>(0, 1)</math> or <math>(0, -1)</math>. Which point we use does not change what value of <math>b</math> is attained, so we use <math>(0, -1)</math>. Here, we must find the point <math>(0, y)</math> such that the distance from <math>(0, y)</math> to both foci and <math>(0, -1)</math> is the same. Now, we have the two following equations. <cmath>(\sqrt{15})^2 + (y)^2 = b^2</cmath> <cmath>y + 1 = b \implies y = b - 1</cmath> Substituting for <math>y</math>, we have that <cmath>15 + (b - 1)^2 = b^2 \implies -2b + 16 = 0.</cmath> |
Revision as of 22:41, 4 February 2015
Problem
A circle of radius r passes through both foci of, and exactly four points on, the ellipse with equation The set of all possible values of is an interval What is
$\textbf{(A)}\ 5\sqrt{2}+4\qquad\textbf{(B)}\ \sqrt{17}+7\qquad\textbf{(C)}\ 6\sqrt{2}+3\qquad\textbf{(D)}}\ \sqrt{15}+8\qquad\textbf{(E)}\ 12$ (Error compiling LaTeX. Unknown error_msg)
Solution
We can graph the ellipse by seeing that the center is , setting , and finding possible values for , and vice versa. The points where the ellipse intersects the coordinate axes are , and . Recall that the two foci lie on the major axis of the ellipse and are a distance of away from the center of the ellipse, where , with being the length of the major (longer) axis and being the minor (shorter) axis of the ellipse. We have that . Hence, the coordinates of both of our foci are and . In order for a circle to pass through both of these foci, we must have that the center of this circle lies on the y-axis.
The minimum possible value of belongs to the circle whose diameter's endpoints are the foci of this ellipse, so . The value for is achieved when the circle passes through the foci and only three points on the ellipse, which is possible when the circle touches or . Which point we use does not change what value of is attained, so we use . Here, we must find the point such that the distance from to both foci and is the same. Now, we have the two following equations. Substituting for , we have that
Solving the above simply yields that , so our answer is .
See Also
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.