Difference between revisions of "2015 AMC 10A Problems/Problem 25"
AllenWang314 (talk | contribs) (Blanked the page) |
|||
Line 1: | Line 1: | ||
+ | ==Problem 25== | ||
+ | Let <math>S</math> be a square of side length <math>1</math>. Two points are chosen independently at random on the sides of <math>S</math>. The probability that the straight-line distance between the points is at least <math>\tfrac12</math> is <math>\tfrac{a-b\pi}c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers with <math>\gcd(a,b,c)=1</math>. What is <math>a+b+c</math>? | ||
+ | <math>\textbf{(A) }59\qquad\textbf{(B) }60\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math> | ||
+ | |||
+ | ==Solution== | ||
+ | Divide the boundary of the square into halves, thereby forming 8 segments. Without loss of generality, let the first point <math>A</math> be in the bottom-left segment. Then, it is easy to see that any point in the 5 segments not bordering the bottom-left segment will be distance at least <math>\dfrac{1}{2}</math> apart from <math>A</math>. Now, consider choosing the second point on the bottom-right segment. The probability for it to be distance at least 0.5 apart from <math>A</math> is <math>\dfrac{0 + 1}{2} = \dfrac{1}{2}</math> because of linearity of the given probability. (Alternatively, one can set up a coordinate system and use geometric probability.) | ||
+ | |||
+ | If the second point is on the left-bottom segment, then if <math>A</math> is distance <math>x</math> away from the left-bottom vertex, then <math>B</math> must be at least <math>\dfrac{1}{2} - \sqrt{0.25 - x^2}</math> away from that same vertex. Thus, using an averaging argument we find that the probability in this case is | ||
+ | <cmath>\frac{1}{\frac{1}{2}^2} \int_0^{\frac{1}{2}} \dfrac{1}{2} - \sqrt{0.25 - x^2} dx = 4(\frac{1}{4} - \frac{\pi}{16}) = 1 - \frac{\pi}{4}.</cmath> | ||
+ | |||
+ | Thus, averaging the probabilities gives | ||
+ | <cmath>P = \frac{1}{8} (5 + \frac{1}{2} + 1 - \frac{\pi}{4}) = \frac{1}{32} (26 - \pi).</cmath> | ||
+ | |||
+ | Our answer is <math>\textbf{(A)}</math>. |
Revision as of 20:39, 4 February 2015
Problem 25
Let be a square of side length . Two points are chosen independently at random on the sides of . The probability that the straight-line distance between the points is at least is , where , , and are positive integers with . What is ?
Solution
Divide the boundary of the square into halves, thereby forming 8 segments. Without loss of generality, let the first point be in the bottom-left segment. Then, it is easy to see that any point in the 5 segments not bordering the bottom-left segment will be distance at least apart from . Now, consider choosing the second point on the bottom-right segment. The probability for it to be distance at least 0.5 apart from is because of linearity of the given probability. (Alternatively, one can set up a coordinate system and use geometric probability.)
If the second point is on the left-bottom segment, then if is distance away from the left-bottom vertex, then must be at least away from that same vertex. Thus, using an averaging argument we find that the probability in this case is
Thus, averaging the probabilities gives
Our answer is .