Difference between revisions of "2015 AMC 10A Problems/Problem 15"
(→Solution) |
|||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | You can create the equation | + | You can create the equation <math>\frac{x+1}{y+1}=\frac{11x}{10y}</math> |
− | <math>\frac{x+1}{y+1}= | ||
− | <math> | + | Cross multiplying and combining like terms gives <math>xy + 11x - 10y = 0</math>. |
− | <math>(x | + | This can be factored into <math>(x - 10)(y + 11) = -110</math>. |
− | <math> | + | Either <math>x - 10</math> has to be positive and <math>y + 11</math> has to be negative or vice versa, but if <math>y + 11</math> as negative, then <math>y</math> would be negative, so that halves our search space. |
− | <math>y | + | Similarly, <math>x > 0</math>, so <math>x - 10> -10</math> and <math>y > 0</math>, so <math>y + 11 > 11</math>. |
− | <math> | + | This leaves the factor pairs: <math>(-1, 110), (-2, 55), and (-5, 22)</math>. |
+ | |||
+ | But we can't stop here because <math>x</math> and <math>y</math> must be relatively prime. | ||
+ | |||
+ | <math>(-1, 110)</math> gives <math>x = 9</math> and <math>y = 99</math>. <math>9</math> and <math>99</math> are not relatively prime so this doesn't work. | ||
+ | |||
+ | <math>(-2, 55)</math> gives <math>x = 8</math> and <math>y = 44</math>. This doesn't work. | ||
+ | |||
+ | <math>(-5, 22)</math> gives <math>x = 5</math> and <math>y = 11</math>. This does work. | ||
+ | |||
+ | We found one valid solution so the answer is <math>\boxed{\textbf{(B) }1}</math>. |
Revision as of 18:06, 4 February 2015
Problem
Consider the set of all fractions , where and are relatively prime positive integers. How many of these fractions have the property that if both numerator and denominator are increased by , the value of the fraction is increased by ?
Solution
You can create the equation
Cross multiplying and combining like terms gives .
This can be factored into .
Either has to be positive and has to be negative or vice versa, but if as negative, then would be negative, so that halves our search space.
Similarly, , so and , so .
This leaves the factor pairs: .
But we can't stop here because and must be relatively prime.
gives and . and are not relatively prime so this doesn't work.
gives and . This doesn't work.
gives and . This does work.
We found one valid solution so the answer is .