Difference between revisions of "2015 AMC 10A Problems/Problem 19"

(Solution)
(Solution)
Line 17: Line 17:
 
Solving gives <math>AF = DF = \frac{5\sqrt{3} - 5}{2}</math>.
 
Solving gives <math>AF = DF = \frac{5\sqrt{3} - 5}{2}</math>.
  
The area of <math>\triangle ADC = \frac12 \cdot DF \cdot AC = \frac{25\sqrt{3} - 25}{2}</math>.
+
The area of <math>\triangle ADC = \frac12 \cdot DF \cdot AC = \frac{25\sqrt{3} - 25}{4}</math>.
  
 
<math>\triangle ADC</math> is congruent to <math>\triangle BEC</math>, so their areas are equal.
 
<math>\triangle ADC</math> is congruent to <math>\triangle BEC</math>, so their areas are equal.
Line 23: Line 23:
 
A triangle's area can be written as the sum of the figures that make it up, so <math>[ABC] = [ADC] + [BEC] + [CDE]</math>.
 
A triangle's area can be written as the sum of the figures that make it up, so <math>[ABC] = [ADC] + [BEC] + [CDE]</math>.
  
<math>\frac{25}{2} = \frac{25\sqrt{3} - 25}{2} + \frac{25\sqrt{3} - 25}{2} + [CDE]</math>.
+
<math>\frac{25}{2} = \frac{25\sqrt{3} - 25}{4} + \frac{25\sqrt{3} - 25}{4} + [CDE]</math>.
  
 
Solving gives <math>[CDE] = \frac{50 - 25\sqrt{3}}{2}</math>, so the answer is <math>\boxed{\textbf{(D) }\frac{50 - 25\sqrt{3}}{2}}</math>.
 
Solving gives <math>[CDE] = \frac{50 - 25\sqrt{3}}{2}</math>, so the answer is <math>\boxed{\textbf{(D) }\frac{50 - 25\sqrt{3}}{2}}</math>.

Revision as of 17:51, 4 February 2015

Problem

The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle ACB$ intersect $AB$ at $D$ and $E$. What is the area of $\bigtriangleup CDE$?

$\textbf{(A) }\dfrac{5\sqrt{2}}{3}\qquad\textbf{(B) }\dfrac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\dfrac{15\sqrt{3}}{8}\qquad\textbf{(D) }\dfrac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\dfrac{25}{6}$

Solution

$\triangle ADC$ can be split into a $45-45-90$ right triangle and a $30-60-90$ right triangle by dropping a perpendicular from $D$ to side $AC$. Let $F$ be where that perpendicular intersects $AC$.

Because the side lengths of a $45-45-90$ right triangle are in ratio $a:a:2a$, $DF = AF$.

Because the side lengths of a $30-60-90$ right triangle are in ratio $a:a\sqrt{3}:2a$ and $AF$ + $FC = 5$, $DF = \frac{5 - AF}{\sqrt{3}}$.

Setting the two equations for $DF$ equal together, $AF = \frac{5 - AF}{\sqrt{3}}$.

Solving gives $AF = DF = \frac{5\sqrt{3} - 5}{2}$.

The area of $\triangle ADC = \frac12 \cdot DF \cdot AC = \frac{25\sqrt{3} - 25}{4}$.

$\triangle ADC$ is congruent to $\triangle BEC$, so their areas are equal.

A triangle's area can be written as the sum of the figures that make it up, so $[ABC] = [ADC] + [BEC] + [CDE]$.

$\frac{25}{2} = \frac{25\sqrt{3} - 25}{4} + \frac{25\sqrt{3} - 25}{4} + [CDE]$.

Solving gives $[CDE] = \frac{50 - 25\sqrt{3}}{2}$, so the answer is $\boxed{\textbf{(D) }\frac{50 - 25\sqrt{3}}{2}}$.