Difference between revisions of "2014 AMC 12B Problems/Problem 21"
(→Problem 21) |
m (→Solution 1) |
||
Line 15: | Line 15: | ||
Draw the attitude from <math>H</math> to <math>AB</math> and call the foot <math>L</math>. Then <math>HL=1</math>. Consider <math>HJ</math>. It is the hypotenuse of both right triangles <math>\triangle HGJ</math> and <math>\triangle HLJ</math>, and we know <math>HG=BE</math> and <math>JG=1</math>, so we must have <math>LJ=HG=BE</math>. | Draw the attitude from <math>H</math> to <math>AB</math> and call the foot <math>L</math>. Then <math>HL=1</math>. Consider <math>HJ</math>. It is the hypotenuse of both right triangles <math>\triangle HGJ</math> and <math>\triangle HLJ</math>, and we know <math>HG=BE</math> and <math>JG=1</math>, so we must have <math>LJ=HG=BE</math>. | ||
− | Notice that all four triangles in this picture are similar and thus we have <math>LA=HD=EJ=1-BE</math>. This means <math>J</math> is the midpoint of <math>AB</math>. So <math>\triangle AJG</math>, along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have <math>AG=\sqrt{3} \cdot AJ=\sqrt{3}/2</math> and subsequently <math>GD=\frac{2-\sqrt{3}}{2}=KE</math>. This means <math>EJ=\sqrt{3} \cdot KE=\frac{2\sqrt{3}-3}{2}</math>, which gives <math>BE=\frac{1}{2}-EJ=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}</math>, so the answer is <math>\textbf{(C)}</math>. | + | Notice that all four triangles in this picture are similar and thus we have <math>LA=HD=EJ=\frac{1}{2}-BE</math>. This means <math>J</math> is the midpoint of <math>AB</math>. So <math>\triangle AJG</math>, along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have <math>AG=\sqrt{3} \cdot AJ=\sqrt{3}/2</math> and subsequently <math>GD=\frac{2-\sqrt{3}}{2}=KE</math>. This means <math>EJ=\sqrt{3} \cdot KE=\frac{2\sqrt{3}-3}{2}</math>, which gives <math>BE=\frac{1}{2}-EJ=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}</math>, so the answer is <math>\textbf{(C)}</math>. |
==Solution 2== | ==Solution 2== |
Revision as of 19:35, 12 January 2015
Problem 21
In the figure, is a square of side length
. The rectangles
and
are congruent. What is
?
Solution 1
Draw the attitude from to
and call the foot
. Then
. Consider
. It is the hypotenuse of both right triangles
and
, and we know
and
, so we must have
.
Notice that all four triangles in this picture are similar and thus we have . This means
is the midpoint of
. So
, along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have
and subsequently
. This means
, which gives
, so the answer is
.
Solution 2
Let . Let
. Because
and
,
are all similar. Using proportions and the pythagorean theorem, we find
Because we know that
, we can set up a systems of equations
Solving for
in the second equation, we get
Plugging this into the first equation, we get
Plugging into the previous equation with
, we get
Solution 3
Let ,
, and
. Then
and because
and
,
. Furthermore, the area of the four triangles and the two rectangles sums to 1:
By the Pythagorean theorem:
Then by the rational root theorem, this has roots ,
, and
. The first and last roots are extraneous because they imply
and
, respectively, thus
.
See also
2014 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.