Difference between revisions of "1989 AHSME Problems/Problem 28"

m
Line 1: Line 1:
 +
== Problem ==
 +
 
Find the sum of the roots of <math>\tan^2x-9\tan x+1=0</math> that are between <math>x=0</math> and <math>x=2\pi</math> radians.
 
Find the sum of the roots of <math>\tan^2x-9\tan x+1=0</math> that are between <math>x=0</math> and <math>x=2\pi</math> radians.
  
 
<math> \mathrm{(A)  \frac{\pi}{2} } \qquad \mathrm{(B) \pi } \qquad \mathrm{(C) \frac{3\pi}{2} } \qquad \mathrm{(D) 3\pi } \qquad \mathrm{(E) 4\pi }  </math>
 
<math> \mathrm{(A)  \frac{\pi}{2} } \qquad \mathrm{(B) \pi } \qquad \mathrm{(C) \frac{3\pi}{2} } \qquad \mathrm{(D) 3\pi } \qquad \mathrm{(E) 4\pi }  </math>
 +
 +
== Solution ==
 +
 +
== See also ==
 +
{{AHSME box|year=1989|num-b=27|num-a=29}} 
 +
 +
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 07:10, 22 October 2014

Problem

Find the sum of the roots of $\tan^2x-9\tan x+1=0$ that are between $x=0$ and $x=2\pi$ radians.

$\mathrm{(A)  \frac{\pi}{2} } \qquad \mathrm{(B) \pi } \qquad \mathrm{(C) \frac{3\pi}{2} } \qquad \mathrm{(D) 3\pi } \qquad \mathrm{(E) 4\pi }$

Solution

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png