Difference between revisions of "1993 UNCO Math Contest II Problems/Problem 6"

(Created page with "== Problem == Observe that <cmath>\begin{align*} 2^2+3^2+6^3 &= 7^2 \\ 3^2+4^2+12^3 &= 13^2 \\ 4^2+5^2+20^3 &= 21^2 \\ \end{align*}</cmath> (a) Find integers <math>x</math> a...")
 
m (Problem)
Line 4: Line 4:
 
Observe that  
 
Observe that  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
2^2+3^2+6^3 &= 7^2 \\
+
2^2+3^2+6^2 &= 7^2 \\
3^2+4^2+12^3 &= 13^2 \\
+
3^2+4^2+12^2 &= 13^2 \\
4^2+5^2+20^3 &= 21^2 \\
+
4^2+5^2+20^2 &= 21^2 \\
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
Line 14: Line 14:
  
 
(c) Prove your conjecture.
 
(c) Prove your conjecture.
 
 
  
 
== Solution ==
 
== Solution ==

Revision as of 14:39, 20 October 2014

Problem

Observe that \begin{align*} 2^2+3^2+6^2 &= 7^2 \\ 3^2+4^2+12^2 &= 13^2 \\ 4^2+5^2+20^2 &= 21^2 \\ \end{align*}

(a) Find integers $x$ and $y$ so that $5^2+6^2+x^2=y^2.$

(b) Conjecture a general rule that is being illustrated here.

(c) Prove your conjecture.

Solution

See also

1993 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions