Difference between revisions of "1969 AHSME Problems/Problem 31"
(Created page with "== Problem == Let <math>OABC</math> be a unit square in the <math>xy</math>-plane with <math>O(0,0),A(1,0),B(1,1)</math> and <math>C(0,1)</math>. Let <math>u=x^2-y^2</math>, and ...") |
m (→Problem) |
||
Line 53: | Line 53: | ||
</asy> | </asy> | ||
+ | |||
+ | <asy> | ||
+ | draw((-3,0)--(3,0),EndArrow); | ||
+ | draw((0,-4)--(0,4),EndArrow); | ||
+ | draw((-1,0)--(0,1)--(1,0)--(0,-1)--cycle,dot); | ||
+ | MP("(E)",(-5,2),SW); | ||
+ | MP("O",(.1,.1),SW); | ||
+ | MP("(-1,0)",(-1,0),SW); | ||
+ | MP("(0,1)",(0,1),NE); | ||
+ | MP("(1,0)",(1,0),SE); | ||
+ | MP("(0,-1)",(0,-1),SE); | ||
+ | </asy> | ||
== Solution == | == Solution == |
Revision as of 01:26, 1 October 2014
Problem
Let be a unit square in the -plane with and . Let , and be a transformation of the -plane into the -plane. The transform (or image) of the square is:
Solution
See also
1969 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 30 |
Followed by Problem 32 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.