Difference between revisions of "1968 AHSME Problems/Problem 1"

m (Solution)
m
Line 10: Line 10:
 
{{AHSME box|year=1968|num-b=1|num-a=2}}   
 
{{AHSME box|year=1968|num-b=1|num-a=2}}   
  
[[Category: Introductory Algebra Problems]]
+
[[Category: Introductory Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 02:26, 29 September 2014

Problem

Let $P$ units be the increase in circumference of a circle resulting from an increase in $\pi$ units in the diameter. Then $P$ equals:

$\text{(A) } \frac{1}{\pi}\quad\text{(B) } \pi\quad\text{(C) } \frac{\pi^2}{2}\quad\text{(D) } \pi^2\quad\text{(E) } 2\pi$

Solution

$\fbox{D}$

See also

1968 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png