Difference between revisions of "1991 AHSME Problems/Problem 13"

(Created page with "== Problem == Horses <math>X,Y</math> and <math>Z</math> are entered in a three-horse race in which ties are not possible. The odds against <math>X</math> winning are <math>3:1<...")
 
m (Solution)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{E}</math>
+
<math>\fbox{D}</math>
  
 
== See also ==
 
== See also ==

Revision as of 14:53, 28 September 2014

Problem

Horses $X,Y$ and $Z$ are entered in a three-horse race in which ties are not possible. The odds against $X$ winning are $3:1$ and the odds against $Y$ winning are $2:3$, what are the odds against $Z$ winning? (By "odds against $H$ winning are $p:q$" we mean the probability of $H$ winning the race is $\frac{q}{p+q}$.)

$\text{(A) } 3:20\quad \text{(B) } 5:6\quad \text{(C) } 8:5\quad \text{(D) } 17:3\quad \text{(E) } 20:3$

Solution

$\fbox{D}$

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png