Difference between revisions of "1991 AHSME Problems/Problem 21"
m |
|||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
For all real numbers <math>x</math> except <math>x=0</math> and <math>x=1</math> the function <math>f(x)</math> is defined by <math>f(x/(1-x))=1/x</math>. Suppose <math>0\leq t\leq \pi/2</math>. What is the value of <math>f(\sec^2t)</math>? | For all real numbers <math>x</math> except <math>x=0</math> and <math>x=1</math> the function <math>f(x)</math> is defined by <math>f(x/(1-x))=1/x</math>. Suppose <math>0\leq t\leq \pi/2</math>. What is the value of <math>f(\sec^2t)</math>? | ||
+ | |||
+ | == Solution == | ||
+ | <math>\fbox{}</math> | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1991|num-b=20|num-a=22}} | ||
+ | |||
+ | [[Category: Intermediate Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:59, 28 September 2014
Problem
For all real numbers except and the function is defined by . Suppose . What is the value of ?
Solution
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.