Difference between revisions of "1993 AHSME Problems"

m
Line 21: Line 21:
 
== Problem 3 ==
 
== Problem 3 ==
  
 +
<math>\frac{15^{30}}{45^{15}} =</math>
 +
 +
<math>\text{(A) } \left(\frac{1}{3}\right)^{15}\quad
 +
\text{(B) } \left(\frac{1}{3}\right)^{2}\quad
 +
\text{(C) } 1\quad
 +
\text{(D) } 3^{15}\quad
 +
\text{(E) } 5^{15}</math>
  
 
[[1993 AHSME Problems/Problem 3|Solution]]
 
[[1993 AHSME Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
Define the operation "<math>\circ</math>" by <math>x\circ y=4x-3y+xy</math>, for all real numbers <math>x</math> and <math>y</math>. For how many real numbers <math>y</math> does <math>3\circ y=12</math>?
 +
 +
<math>\text{(A) } 0\quad
 +
\text{(B) } 1\quad
 +
\text{(C) } 3\quad
 +
\text{(D) } 4\quad
 +
\text{(E) more than 4} </math>
  
  
Line 31: Line 45:
 
== Problem 5 ==
 
== Problem 5 ==
  
 +
Last year a bicycle cost &#036;160 and a cycling helmet &#036;40. This year the cost of the bicycle increased by <math>5\%</math>, and the cost of the helmet increased by <math>10\%</math>. The percent increase in the combined cost of the bicycle and the helmet is:
 +
 +
<math>\text{(A) } 6\%\quad
 +
\text{(B) } 7\%\quad
 +
\text{(C) } 7.5\%\quad
 +
\text{(D) } 8\%\quad
 +
\text{(E) } 15\%</math>
  
 
[[1993 AHSME Problems/Problem 5|Solution]]
 
[[1993 AHSME Problems/Problem 5|Solution]]
Line 36: Line 57:
 
== Problem 6 ==
 
== Problem 6 ==
  
 +
 +
<math>\sqrt{\frac{8^{10}+4^{10}}{8^4+4^{11}}}=</math>
 +
 +
<math>\text{(A) } \sqrt{2}\quad
 +
\text{(B) } 16\quad
 +
\text{(C) } 32\quad
 +
\text{(D) } (12)^{\tfrac{2}{3}}\quad
 +
\text{(E) } 512.5</math>
  
 
[[1993 AHSME Problems/Problem 6|Solution]]
 
[[1993 AHSME Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
 +
The symbol <math>R_k</math> stands for an integer whose base-ten representation is a sequence of <math>k</math> ones. For example, <math>R_3=111,R_5=1111</math>, etc. When <math>R_{24}</math> is divided by <math>R_4</math>, the quotient <math>Q=R_{24}/R_4</math> is an integer whose base-ten representation is a sequence containing only ones and zeroes. The number of zeros in <math>Q</math> is:
 +
 +
<math>\text{(A) } 10\quad
 +
\text{(B) } 11\quad
 +
\text{(C) } 12\quad
 +
\text{(D) } 13\quad
 +
\text{(E) } 15</math>
  
  
Line 46: Line 83:
 
== Problem 8 ==
 
== Problem 8 ==
  
 +
Let <math>C_1</math> and <math>C_2</math> be circles of radius 1 that are in the same plane and tangent to each other. How many circles of radius 3 are in this plane and tangent to both <math>C_1</math> and <math>C_2</math>?
 +
 +
<math>\text{(A) } 2\quad
 +
\text{(B) } 4\quad
 +
\text{(C) } 5\quad
 +
\text{(D) } 6\quad
 +
\text{(E) } 8</math>
  
 
[[1993 AHSME Problems/Problem 8|Solution]]
 
[[1993 AHSME Problems/Problem 8|Solution]]
Line 51: Line 95:
 
== Problem 9 ==
 
== Problem 9 ==
  
 +
 +
Country <math>A</math> has <math>c\%</math> of the world's population and <math>d\%</math> of the worlds wealth. Country <math>B</math> has <math>e\%</math> of the world's population and <math>f\%</math> of its wealth. Assume that the citizens of <math>A</math> share the wealth of <math>A</math> equally,and assume that those of <math>B</math> share the wealth of <math>B</math> equally. Find the ratio of the wealth of a citizen of <math>A</math> to the wealth of a citizen of <math>B</math>.
 +
 +
<math>\text{(A) } \frac{cd}{ef}\quad
 +
\text{(B) } \frac{ce}{ef}\quad
 +
\text{(C) } \frac{cf}{de}\quad
 +
\text{(D) } \frac{de}{cf}\quad
 +
\text{(E) } \frac{df}{ce}</math>
  
 
[[1993 AHSME Problems/Problem 9|Solution]]
 
[[1993 AHSME Problems/Problem 9|Solution]]
Line 56: Line 108:
 
== Problem 10 ==
 
== Problem 10 ==
  
 +
 +
Let <math>r</math> be the number that results when both the base and the exponent of <math>a^b</math> are tripled, where <math>a,b>0</math>. If <math>r</math> equals the product of <math>a^b</math> and <math>x^b</math> where <math>x>0</math>, then <math>x=</math>
 +
 +
<math>\text{(A) } 3\quad
 +
\text{(B) } 3a^2\quad
 +
\text{(C) } 27a^2\quad
 +
\text{(D) } 2a^{3b}\quad
 +
\text{(E) } 3a^{2b}</math>
  
 
[[1993 AHSME Problems/Problem 10|Solution]]
 
[[1993 AHSME Problems/Problem 10|Solution]]
Line 61: Line 121:
 
== Problem 11 ==
 
== Problem 11 ==
  
 +
 +
If <math>log_2(log_2(log_2(x)))=2</math>, then how many digits are in the base-ten representation for x?
 +
 +
<math>\text{(A) } 5\quad
 +
\text{(B) } 7\quad
 +
\text{(C) } 9\quad
 +
\text{(D) } 11\quad
 +
\text{(E) } 13</math>
  
 
[[1993 AHSME Problems/Problem 11|Solution]]
 
[[1993 AHSME Problems/Problem 11|Solution]]
Line 66: Line 134:
 
== Problem 12 ==
 
== Problem 12 ==
  
 +
If <math>f(2x)=\frac{2}{2+x}</math> for all <math>x>0</math>, then <math>2f(x)=</math>
 +
 +
<math>\text{(A) } \frac{2}{1+x}\quad
 +
\text{(B) } \frac{2}{2+x}\quad
 +
\text{(C) } \frac{4}{1+x}\quad
 +
\text{(D) } \frac{4}{2+x}\quad
 +
\text{(E) } \frac{8}{4+x}</math>
  
 
[[1993 AHSME Problems/Problem 12|Solution]]
 
[[1993 AHSME Problems/Problem 12|Solution]]
  
 
== Problem 13 ==
 
== Problem 13 ==
 +
 +
A square of perimeter 20 is inscribed in a square of perimeter 28. What is the greatest distance between a vertex of the inner square and a vertex of the outer square?
 +
 +
<math>\text{(A) } \sqrt{58}\quad
 +
\text{(B) } \frac{7\sqrt{5}}{2}\quad
 +
\text{(C) } 8\quad
 +
\text{(D) } \sqrt{65}\quad
 +
\text{(E) } 5\sqrt{3}</math>
  
  
Line 75: Line 158:
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
<asy>
 +
draw((-1,0)--(1,0)--(1+sqrt(2),sqrt(2))--(0,sqrt(2)+sqrt(13-2*sqrt(2)))--(-1-sqrt(2),sqrt(2))--cycle,black+linewidth(.75));
 +
MP("A",(-1,0),SW);MP("B",(1,0),SE);MP("C",(1+sqrt(2),sqrt(2)),E);MP("D",(0,sqrt(2)+sqrt(13-2*sqrt(2))),N);MP("E",(-1-sqrt(2),sqrt(2)),W);
 +
dot((-1,0));dot((1,0));dot((1+sqrt(2),sqrt(2)));dot((-1-sqrt(2),sqrt(2)));dot((0,sqrt(2)+sqrt(13-2*sqrt(2))));
 +
</asy>
  
 +
The convex pentagon <math>ABCDE</math> has <math>\angle{A}=\angle{B}=120^\circ,EA=AB=BC=2</math> and <math>CD=DE=4</math>. What is the area of ABCDE?
 +
 +
<math>\text{(A) } 10\quad
 +
\text{(B) } 7\sqrt{3}\quad
 +
\text{(C) } 15\quad
 +
\text{(D) } 9\sqrt{3}\quad
 +
\text{(E) } 12\sqrt{5}</math>
  
 
[[1993 AHSME Problems/Problem 14|Solution]]
 
[[1993 AHSME Problems/Problem 14|Solution]]
Line 81: Line 176:
 
== Problem 15 ==
 
== Problem 15 ==
  
 +
 +
For how many values of <math>n</math> will an <math>n</math>-sided regular polygon have interior angles with integral measures?
 +
 +
<math>\text{(A) } 16\quad
 +
\text{(B) } 18\quad
 +
\text{(C) } 20\quad
 +
\text{(D) } 22\quad
 +
\text{(E) } 24</math>
  
 
[[1993 AHSME Problems/Problem 15|Solution]]
 
[[1993 AHSME Problems/Problem 15|Solution]]
  
 
== Problem 16 ==
 
== Problem 16 ==
 +
Consider the non-decreasing sequence of positive integers
 +
<cmath>1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,\cdots</cmath>
 +
in which the <math>n^{th}</math> positive integer appears <math>n</math> times. The remainder when the <math>1993^{rd} </math> term is divided by <math>5</math> is
  
 +
<math>\text{(A) } 0\quad
 +
\text{(B) } 1\quad
 +
\text{(C) } 2\quad
 +
\text{(D) } 3\quad
 +
\text{(E) } 4</math>
  
 
[[1993 AHSME Problems/Problem 16|Solution]]
 
[[1993 AHSME Problems/Problem 16|Solution]]
Line 91: Line 202:
 
== Problem 17 ==
 
== Problem 17 ==
  
 +
<asy>
 +
draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle, black+linewidth(.75));
 +
draw((0,-1)--(0,1), black+linewidth(.75));
 +
draw((-1,0)--(1,0), black+linewidth(.75));
 +
draw((-1,-1/sqrt(3))--(1,1/sqrt(3)), black+linewidth(.75));
 +
draw((-1,1/sqrt(3))--(1,-1/sqrt(3)), black+linewidth(.75));
 +
draw((-1/sqrt(3),-1)--(1/sqrt(3),1), black+linewidth(.75));
 +
draw((1/sqrt(3),-1)--(-1/sqrt(3),1), black+linewidth(.75));
 +
</asy>
 +
 +
Amy painted a dartboard over a square clock face using the "hour positions" as boundaries.[See figure.] If <math>t</math> is the area of one of the eight triangular regions such as that between 12 o'clock and 1 o'clock, and <math>q</math> is the area of one of the four corner quadrilaterals such as that between 1 o'clock and 2 o'clock, then <math>\frac{q}{t}=</math>
 +
 +
<math>\text{(A) } 2\sqrt{3}-2\quad
 +
\text{(B) } \frac{3}{2}\quad
 +
\text{(C) } \frac{\sqrt{5}+1}{2}\quad
 +
\text{(D) } \sqrt{3}\quad
 +
\text{(E) } 2</math>
  
 
[[1993 AHSME Problems/Problem 17|Solution]]
 
[[1993 AHSME Problems/Problem 17|Solution]]
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
Al and Barb start their new jobs on the same day. Al's schedule is 3 work-days followed by 1 rest-day. Barb's schedule is 7 work-days followed by 3 rest-days. On how many of their first 1000 days do both have rest-days on the same day?
  
 +
<math>\text{(A) } 48\quad
 +
\text{(B) } 50\quad
 +
\text{(C) } 72\quad
 +
\text{(D) } 75\quad
 +
\text{(E) } 100</math>
  
 
[[1993 AHSME Problems/Problem 18|Solution]]
 
[[1993 AHSME Problems/Problem 18|Solution]]
Line 101: Line 235:
 
== Problem 19 ==
 
== Problem 19 ==
  
 +
How many ordered pairs <math>(m,n)</math> of positive integers are solutions to
 +
<cmath>\frac{4}{m}+\frac{2}{n}=1?</cmath>
 +
 +
<math>\text{(A) } 1\quad
 +
\text{(B) } 2\quad
 +
\text{(C) } 3\quad
 +
\text{(D) } 4\quad
 +
\text{(E) } \text{more than }6</math>
  
 
[[1993 AHSME Problems/Problem 19|Solution]]
 
[[1993 AHSME Problems/Problem 19|Solution]]
Line 106: Line 248:
 
== Problem 20 ==
 
== Problem 20 ==
  
 +
Consider the equation <math>10z^2-3iz-k=0</math>, where <math>z</math> is a complex variable and <math>i^2=-1</math>. Which of the following statements is true?
 +
 +
<math>\text{(A) For all positive real numbers k, both roots are pure imaginary} \quad\\
 +
\text{(B) For all negative real numbers k, both roots are pure imaginary} \quad\\
 +
\text{(C) For all pure imaginary numbers k, both roots are real and rational} \quad\\
 +
\text{(D) For all pure imaginary numbers k, both roots are real and irrational} \quad\\
 +
\text{(E) For all complex numbers k, neither root is real} </math>
  
 
[[1993 AHSME Problems/Problem 20|Solution]]
 
[[1993 AHSME Problems/Problem 20|Solution]]
  
 
== Problem 21 ==
 
== Problem 21 ==
 +
 +
Let <math>a_1,a_2,\cdots,a_k</math> be a finite arithmetic sequence with <math>a_4 +a_7+a_{10} = 17</math> and <math>a_4+a_5+\cdots+a_{13} +a_{14} = 77</math>.
 +
 +
If <math>a_k = 13</math>, then <math>k =</math>
 +
 +
<math>\text{(A) } 16\quad
 +
\text{(B) } 18\quad
 +
\text{(C) } 20\quad
 +
\text{(D) } 22\quad
 +
\text{(E) } 24</math>
  
  
Line 116: Line 275:
 
== Problem 22 ==
 
== Problem 22 ==
  
 +
<asy>
 +
draw((-1,0)--(1,0)--(1,-1)--(-1,-1)--cycle,black+linewidth(.75));
 +
MP("?",(0,0),S);
 +
</asy>
 +
 +
Twenty cubical blocks are arranged as shown. First, 10 are arranged in a triangular pattern; then a layer of 6, arranged in a triangular patter, is centered on the 10; then a layer of 3, arranged in a triangular pattern, is centered on the 6; and finally one block is centered on top of the third layer. The blocks in the bottom layer are numbered 1 through 10 in some order. Each block in layers 2,3 and 4 is assigned the number which is the sum of numbers assigned to the three blocks on which it rests. Find the smallest possible number which could be assigned to the top block.
 +
 +
<math>\text{(A) } 55\quad
 +
\text{(B) } 83\quad
 +
\text{(C) } 114\quad
 +
\text{(D) } 137\quad
 +
\text{(E) } 144</math>
  
 
[[1993 AHSME Problems/Problem 22|Solution]]
 
[[1993 AHSME Problems/Problem 22|Solution]]
Line 121: Line 292:
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
 +
<asy>
 +
draw(circle((0,0),10),black+linewidth(.75));
 +
draw((-10,0)--(10,0),black+linewidth(.75));
 +
draw((-10,0)--(9,sqrt(19)),black+linewidth(.75));
 +
draw((-10,0)--(9,-sqrt(19)),black+linewidth(.75));
 +
draw((2,0)--(9,sqrt(19)),black+linewidth(.75));
 +
draw((2,0)--(9,-sqrt(19)),black+linewidth(.75));
 +
MP("X",(2,0),N);MP("A",(-10,0),W);MP("D",(10,0),E);MP("B",(9,sqrt(19)),E);MP("C",(9,-sqrt(19)),E);
 +
</asy>
 +
 +
Points <math>A,B,C</math> and <math>D</math> are on a circle of diameter <math>1</math>, and <math>X</math> is on diameter <math>\overline{AD}.</math>
 +
 +
If <math>BX=CX</math> and <math>3\angle{BAC}=\angle{BXC}=36^\circ</math>, then <math>AX=</math>
 +
 +
 +
<math>\text{(A) } cos(6^\circ)cos(12^\circ)sec(18^\circ)\quad\\
 +
\text{(B) } cos(6^\circ)sin(12^\circ)csc(18^\circ)\quad\\
 +
\text{(C) } cos(6^\circ)sin(12^\circ)sec(18^\circ)\quad\\
 +
\text{(D) } sin(6^\circ)sin(12^\circ)csc(18^\circ)\quad\\
 +
\text{(E) } sin(6^\circ)sin(12^\circ)sec(18^\circ)</math>
  
  
Line 127: Line 319:
 
== Problem 24 ==
 
== Problem 24 ==
  
 +
A box contains <math>3</math> shiny pennies and <math>4</math> dull pennies. One by one, pennies are drawn at random from the box and not replaced. If the probability is <math>a/b</math> that it will take more than four draws until the third shiny penny appears and <math>a/b</math> is in lowest terms, then <math>a+b=</math>
 +
 +
<math>\text{(A) } 11\quad
 +
\text{(B) } 20\quad
 +
\text{(C) } 35\quad
 +
\text{(D) } 58\quad
 +
\text{(E) } 66</math>
  
 
[[1993 AHSME Problems/Problem 24|Solution]]
 
[[1993 AHSME Problems/Problem 24|Solution]]
Line 132: Line 331:
 
== Problem 25 ==
 
== Problem 25 ==
  
 +
<asy>
 +
draw((0,0)--(1,sqrt(3)),black+linewidth(.75),EndArrow);
 +
draw((0,0)--(1,-sqrt(3)),black+linewidth(.75),EndArrow);
 +
draw((0,0)--(1,0),dashed+black+linewidth(.75));
 +
dot((1,0));
 +
MP("P",(1,0),E);
 +
</asy>
 +
 +
Let <math>S</math> be the set of points on the rays forming the sides of a <math>120^{\circ}</math> angle, and let <math>P</math> be a fixed point inside the angle
 +
on the angle bisector. Consider all distinct equilateral triangles <math>PQR</math> with <math>Q</math> and <math>R</math> in <math>S</math>.
 +
(Points <math>Q</math> and <math>R</math> may be on the same ray, and switching the names of <math>Q</math> and <math>R</math> does not create a distinct triangle.)
 +
There are
 +
 +
<math>\text{(A) exactly 2 such triangles} \quad\\
 +
\text{(B) exactly 3 such triangles} \quad\\
 +
\text{(C) exactly 7 such triangles} \quad\\
 +
\text{(D) exactly 15 such triangles} \quad\\
 +
\text{(E) more than 15 such triangles} </math>
  
 
[[1993 AHSME Problems/Problem 25|Solution]]
 
[[1993 AHSME Problems/Problem 25|Solution]]
Line 137: Line 354:
 
== Problem 26 ==
 
== Problem 26 ==
  
 +
Find the largest positive value attained by the function
 +
<cmath>f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48} ,\quad x  \text{  a real number}</cmath>
 +
 +
<math>\text{(A) } \sqrt{7}-1\quad
 +
\text{(B) } 3\quad
 +
\text{(C) } 2\sqrt{3}\quad
 +
\text{(D) } 4\quad
 +
\text{(E) } \sqrt{55}-\sqrt{5}</math>
  
 
[[1993 AHSME Problems/Problem 26|Solution]]
 
[[1993 AHSME Problems/Problem 26|Solution]]
Line 142: Line 367:
 
== Problem 27 ==
 
== Problem 27 ==
  
 +
<asy>
 +
draw(circle((4,1),1),black+linewidth(.75));
 +
draw((0,0)--(8,0)--(8,6)--cycle,black+linewidth(.75));
 +
MP("A",(0,0),SW);MP("B",(8,0),SE);MP("C",(8,6),NE);MP("P",(4,1),NW);
 +
MP("8",(4,0),S);MP("6",(8,3),E);MP("10",(4,3),NW);
 +
MP("->",(5,1),E);
 +
dot((4,1));
 +
</asy>
 +
The sides of <math>\triangle ABC</math> have lengths <math>6,8,</math> and <math>10</math>. A circle with center <math>P</math> and radius <math>1</math> rolls around the inside of <math>\triangle ABC</math>, always remaining tangent to at least one side of the triangle. When <math>P</math> first returns to its original position, through what distance has <math>P</math> traveled?
 +
 +
<math>\text{(A) } 10\quad
 +
\text{(B) } 12\quad
 +
\text{(C) } 14\quad
 +
\text{(D) } 15\quad
 +
\text{(E) } 17</math>
  
 
[[1993 AHSME Problems/Problem 27|Solution]]
 
[[1993 AHSME Problems/Problem 27|Solution]]
  
 
== Problem 28 ==
 
== Problem 28 ==
 +
How many triangles with positive area are there whose vertices are points in the <math>xy</math>-plane whose coordinates are integers <math>(x,y)</math> satisfying <math>1\le x\le 4</math> and <math>1\le y\le 4</math>?
 +
 +
<math>\text{(A) } 496\quad
 +
\text{(B) } 500\quad
 +
\text{(C) } 512\quad
 +
\text{(D) } 516\quad
 +
\text{(E) } 560</math>
  
  
Line 152: Line 399:
 
== Problem 29 ==
 
== Problem 29 ==
  
 +
Which of the following could NOT be the lengths of the external diagonals of a right regular prism [a "box"]? (An <math>\textit{external diagonal}</math> is a diagonal of one of the rectangular faces of the box.)
 +
 +
<math>\text{(A) }\{4,5,6\}} \quad
 +
\text{(B) } \{4,5,7\}} \quad
 +
\text{(C) } \{4,6,7\}} \quad
 +
\text{(D) } \{5,6,7\}} \quad
 +
\text{(E) } \{5,7,8\}} </math>
  
 
[[1993 AHSME Problems/Problem 29|Solution]]
 
[[1993 AHSME Problems/Problem 29|Solution]]
Line 157: Line 411:
 
== Problem 30 ==
 
== Problem 30 ==
  
 +
Given <math>0\le x_0<1</math>, let
 +
<cmath>
 +
x_n=\left\{ \begin{tabular}{ll}
 +
2x_{n-1} &\text{ if }2x_{n-1}<1 \\
 +
2x_{n-1}-1 &\text{ if }2x_{n-1}\ge 1
 +
\end{tabular}}
 +
</cmath>
 +
for all integers <math>n>0</math>. For how many <math>x_0</math> is it true that <math>x_0=x_5</math>?
 +
 +
<math>\text{(A) 0} \quad
 +
\text{(B) 1} \quad
 +
\text{(C) 5} \quad
 +
\text{(D) 31} \quad
 +
\text{(E) }\infty </math>
  
 
[[1993 AHSME Problems/Problem 30|Solution]]
 
[[1993 AHSME Problems/Problem 30|Solution]]

Revision as of 01:51, 28 September 2014

Problem 1

For integers $a, b$ and $c$, define $\boxed{a,b,c}$ to mean $a^b-b^c+c^a$. Then $\boxed{1,-1,2}$ equals

$\text{(A)} \ -4 \qquad \text{(B)} \ -2 \qquad \text{(C)} \ 0 \qquad \text{(D)} \ 2 \qquad \text{(E)} \ 4$

Solution

Problem 2

In $\triangle ABC$, $\angle A=55^\circ$, $\angle C=75^\circ$, $D$ is on side $\overline{AB}$ and $E$ is on side $\overline{BC}$ If $DB=BE$, then $\angle BED=$

$\text{(A)}\ 50^\circ \qquad \text{(B)}\ 55^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 65^\circ \qquad \text{(E)}\ 70^\circ$


Solution

Problem 3

$\frac{15^{30}}{45^{15}} =$

$\text{(A) } \left(\frac{1}{3}\right)^{15}\quad \text{(B) } \left(\frac{1}{3}\right)^{2}\quad \text{(C) } 1\quad \text{(D) } 3^{15}\quad \text{(E) } 5^{15}$

Solution

Problem 4

Define the operation "$\circ$" by $x\circ y=4x-3y+xy$, for all real numbers $x$ and $y$. For how many real numbers $y$ does $3\circ y=12$?

$\text{(A) } 0\quad \text{(B) } 1\quad \text{(C) } 3\quad \text{(D) } 4\quad \text{(E) more than 4}$


Solution

Problem 5

Last year a bicycle cost $160 and a cycling helmet $40. This year the cost of the bicycle increased by $5\%$, and the cost of the helmet increased by $10\%$. The percent increase in the combined cost of the bicycle and the helmet is:

$\text{(A) } 6\%\quad \text{(B) } 7\%\quad \text{(C) } 7.5\%\quad \text{(D) } 8\%\quad \text{(E) } 15\%$

Solution

Problem 6

$\sqrt{\frac{8^{10}+4^{10}}{8^4+4^{11}}}=$

$\text{(A) } \sqrt{2}\quad \text{(B) } 16\quad \text{(C) } 32\quad \text{(D) } (12)^{\tfrac{2}{3}}\quad \text{(E) } 512.5$

Solution

Problem 7

The symbol $R_k$ stands for an integer whose base-ten representation is a sequence of $k$ ones. For example, $R_3=111,R_5=1111$, etc. When $R_{24}$ is divided by $R_4$, the quotient $Q=R_{24}/R_4$ is an integer whose base-ten representation is a sequence containing only ones and zeroes. The number of zeros in $Q$ is:

$\text{(A) } 10\quad \text{(B) } 11\quad \text{(C) } 12\quad \text{(D) } 13\quad \text{(E) } 15$


Solution

Problem 8

Let $C_1$ and $C_2$ be circles of radius 1 that are in the same plane and tangent to each other. How many circles of radius 3 are in this plane and tangent to both $C_1$ and $C_2$?

$\text{(A) } 2\quad \text{(B) } 4\quad \text{(C) } 5\quad \text{(D) } 6\quad \text{(E) } 8$

Solution

Problem 9

Country $A$ has $c\%$ of the world's population and $d\%$ of the worlds wealth. Country $B$ has $e\%$ of the world's population and $f\%$ of its wealth. Assume that the citizens of $A$ share the wealth of $A$ equally,and assume that those of $B$ share the wealth of $B$ equally. Find the ratio of the wealth of a citizen of $A$ to the wealth of a citizen of $B$.

$\text{(A) } \frac{cd}{ef}\quad \text{(B) } \frac{ce}{ef}\quad \text{(C) } \frac{cf}{de}\quad \text{(D) } \frac{de}{cf}\quad \text{(E) } \frac{df}{ce}$

Solution

Problem 10

Let $r$ be the number that results when both the base and the exponent of $a^b$ are tripled, where $a,b>0$. If $r$ equals the product of $a^b$ and $x^b$ where $x>0$, then $x=$

$\text{(A) } 3\quad \text{(B) } 3a^2\quad \text{(C) } 27a^2\quad \text{(D) } 2a^{3b}\quad \text{(E) } 3a^{2b}$

Solution

Problem 11

If $log_2(log_2(log_2(x)))=2$, then how many digits are in the base-ten representation for x?

$\text{(A) } 5\quad \text{(B) } 7\quad \text{(C) } 9\quad \text{(D) } 11\quad \text{(E) } 13$

Solution

Problem 12

If $f(2x)=\frac{2}{2+x}$ for all $x>0$, then $2f(x)=$

$\text{(A) } \frac{2}{1+x}\quad \text{(B) } \frac{2}{2+x}\quad \text{(C) } \frac{4}{1+x}\quad \text{(D) } \frac{4}{2+x}\quad \text{(E) } \frac{8}{4+x}$

Solution

Problem 13

A square of perimeter 20 is inscribed in a square of perimeter 28. What is the greatest distance between a vertex of the inner square and a vertex of the outer square?

$\text{(A) } \sqrt{58}\quad \text{(B) } \frac{7\sqrt{5}}{2}\quad \text{(C) } 8\quad \text{(D) } \sqrt{65}\quad \text{(E) } 5\sqrt{3}$


Solution

Problem 14

[asy] draw((-1,0)--(1,0)--(1+sqrt(2),sqrt(2))--(0,sqrt(2)+sqrt(13-2*sqrt(2)))--(-1-sqrt(2),sqrt(2))--cycle,black+linewidth(.75)); MP("A",(-1,0),SW);MP("B",(1,0),SE);MP("C",(1+sqrt(2),sqrt(2)),E);MP("D",(0,sqrt(2)+sqrt(13-2*sqrt(2))),N);MP("E",(-1-sqrt(2),sqrt(2)),W); dot((-1,0));dot((1,0));dot((1+sqrt(2),sqrt(2)));dot((-1-sqrt(2),sqrt(2)));dot((0,sqrt(2)+sqrt(13-2*sqrt(2)))); [/asy]

The convex pentagon $ABCDE$ has $\angle{A}=\angle{B}=120^\circ,EA=AB=BC=2$ and $CD=DE=4$. What is the area of ABCDE?

$\text{(A) } 10\quad \text{(B) } 7\sqrt{3}\quad \text{(C) } 15\quad \text{(D) } 9\sqrt{3}\quad \text{(E) } 12\sqrt{5}$

Solution

Problem 15

For how many values of $n$ will an $n$-sided regular polygon have interior angles with integral measures?

$\text{(A) } 16\quad \text{(B) } 18\quad \text{(C) } 20\quad \text{(D) } 22\quad \text{(E) } 24$

Solution

Problem 16

Consider the non-decreasing sequence of positive integers \[1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,\cdots\] in which the $n^{th}$ positive integer appears $n$ times. The remainder when the $1993^{rd}$ term is divided by $5$ is

$\text{(A) } 0\quad \text{(B) } 1\quad \text{(C) } 2\quad \text{(D) } 3\quad \text{(E) } 4$

Solution

Problem 17

[asy] draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle, black+linewidth(.75)); draw((0,-1)--(0,1), black+linewidth(.75)); draw((-1,0)--(1,0), black+linewidth(.75)); draw((-1,-1/sqrt(3))--(1,1/sqrt(3)), black+linewidth(.75)); draw((-1,1/sqrt(3))--(1,-1/sqrt(3)), black+linewidth(.75)); draw((-1/sqrt(3),-1)--(1/sqrt(3),1), black+linewidth(.75)); draw((1/sqrt(3),-1)--(-1/sqrt(3),1), black+linewidth(.75)); [/asy]

Amy painted a dartboard over a square clock face using the "hour positions" as boundaries.[See figure.] If $t$ is the area of one of the eight triangular regions such as that between 12 o'clock and 1 o'clock, and $q$ is the area of one of the four corner quadrilaterals such as that between 1 o'clock and 2 o'clock, then $\frac{q}{t}=$

$\text{(A) } 2\sqrt{3}-2\quad \text{(B) } \frac{3}{2}\quad \text{(C) } \frac{\sqrt{5}+1}{2}\quad \text{(D) } \sqrt{3}\quad \text{(E) } 2$

Solution

Problem 18

Al and Barb start their new jobs on the same day. Al's schedule is 3 work-days followed by 1 rest-day. Barb's schedule is 7 work-days followed by 3 rest-days. On how many of their first 1000 days do both have rest-days on the same day?

$\text{(A) } 48\quad \text{(B) } 50\quad \text{(C) } 72\quad \text{(D) } 75\quad \text{(E) } 100$

Solution

Problem 19

How many ordered pairs $(m,n)$ of positive integers are solutions to \[\frac{4}{m}+\frac{2}{n}=1?\]

$\text{(A) } 1\quad \text{(B) } 2\quad \text{(C) } 3\quad \text{(D) } 4\quad \text{(E) } \text{more than }6$

Solution

Problem 20

Consider the equation $10z^2-3iz-k=0$, where $z$ is a complex variable and $i^2=-1$. Which of the following statements is true?

$\text{(A) For all positive real numbers k, both roots are pure imaginary} \quad\\ \text{(B) For all negative real numbers k, both roots are pure imaginary} \quad\\ \text{(C) For all pure imaginary numbers k, both roots are real and rational} \quad\\ \text{(D) For all pure imaginary numbers k, both roots are real and irrational} \quad\\ \text{(E) For all complex numbers k, neither root is real}$

Solution

Problem 21

Let $a_1,a_2,\cdots,a_k$ be a finite arithmetic sequence with $a_4 +a_7+a_{10} = 17$ and $a_4+a_5+\cdots+a_{13} +a_{14} = 77$.

If $a_k = 13$, then $k =$

$\text{(A) } 16\quad \text{(B) } 18\quad \text{(C) } 20\quad \text{(D) } 22\quad \text{(E) } 24$


Solution

Problem 22

[asy] draw((-1,0)--(1,0)--(1,-1)--(-1,-1)--cycle,black+linewidth(.75)); MP("?",(0,0),S); [/asy]

Twenty cubical blocks are arranged as shown. First, 10 are arranged in a triangular pattern; then a layer of 6, arranged in a triangular patter, is centered on the 10; then a layer of 3, arranged in a triangular pattern, is centered on the 6; and finally one block is centered on top of the third layer. The blocks in the bottom layer are numbered 1 through 10 in some order. Each block in layers 2,3 and 4 is assigned the number which is the sum of numbers assigned to the three blocks on which it rests. Find the smallest possible number which could be assigned to the top block.

$\text{(A) } 55\quad \text{(B) } 83\quad \text{(C) } 114\quad \text{(D) } 137\quad \text{(E) } 144$

Solution


Problem 23

[asy] draw(circle((0,0),10),black+linewidth(.75)); draw((-10,0)--(10,0),black+linewidth(.75)); draw((-10,0)--(9,sqrt(19)),black+linewidth(.75)); draw((-10,0)--(9,-sqrt(19)),black+linewidth(.75)); draw((2,0)--(9,sqrt(19)),black+linewidth(.75)); draw((2,0)--(9,-sqrt(19)),black+linewidth(.75)); MP("X",(2,0),N);MP("A",(-10,0),W);MP("D",(10,0),E);MP("B",(9,sqrt(19)),E);MP("C",(9,-sqrt(19)),E); [/asy]

Points $A,B,C$ and $D$ are on a circle of diameter $1$, and $X$ is on diameter $\overline{AD}.$

If $BX=CX$ and $3\angle{BAC}=\angle{BXC}=36^\circ$, then $AX=$


$\text{(A) } cos(6^\circ)cos(12^\circ)sec(18^\circ)\quad\\ \text{(B) } cos(6^\circ)sin(12^\circ)csc(18^\circ)\quad\\ \text{(C) } cos(6^\circ)sin(12^\circ)sec(18^\circ)\quad\\ \text{(D) } sin(6^\circ)sin(12^\circ)csc(18^\circ)\quad\\ \text{(E) } sin(6^\circ)sin(12^\circ)sec(18^\circ)$


Solution

Problem 24

A box contains $3$ shiny pennies and $4$ dull pennies. One by one, pennies are drawn at random from the box and not replaced. If the probability is $a/b$ that it will take more than four draws until the third shiny penny appears and $a/b$ is in lowest terms, then $a+b=$

$\text{(A) } 11\quad \text{(B) } 20\quad \text{(C) } 35\quad \text{(D) } 58\quad \text{(E) } 66$

Solution

Problem 25

[asy] draw((0,0)--(1,sqrt(3)),black+linewidth(.75),EndArrow); draw((0,0)--(1,-sqrt(3)),black+linewidth(.75),EndArrow); draw((0,0)--(1,0),dashed+black+linewidth(.75)); dot((1,0)); MP("P",(1,0),E); [/asy]

Let $S$ be the set of points on the rays forming the sides of a $120^{\circ}$ angle, and let $P$ be a fixed point inside the angle on the angle bisector. Consider all distinct equilateral triangles $PQR$ with $Q$ and $R$ in $S$. (Points $Q$ and $R$ may be on the same ray, and switching the names of $Q$ and $R$ does not create a distinct triangle.) There are

$\text{(A) exactly 2 such triangles} \quad\\ \text{(B) exactly 3 such triangles} \quad\\ \text{(C) exactly 7 such triangles} \quad\\ \text{(D) exactly 15 such triangles} \quad\\ \text{(E) more than 15 such triangles}$

Solution

Problem 26

Find the largest positive value attained by the function \[f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48} ,\quad x  \text{  a real number}\]

$\text{(A) } \sqrt{7}-1\quad \text{(B) } 3\quad \text{(C) } 2\sqrt{3}\quad \text{(D) } 4\quad \text{(E) } \sqrt{55}-\sqrt{5}$

Solution

Problem 27

[asy] draw(circle((4,1),1),black+linewidth(.75)); draw((0,0)--(8,0)--(8,6)--cycle,black+linewidth(.75)); MP("A",(0,0),SW);MP("B",(8,0),SE);MP("C",(8,6),NE);MP("P",(4,1),NW); MP("8",(4,0),S);MP("6",(8,3),E);MP("10",(4,3),NW); MP("->",(5,1),E); dot((4,1)); [/asy] The sides of $\triangle ABC$ have lengths $6,8,$ and $10$. A circle with center $P$ and radius $1$ rolls around the inside of $\triangle ABC$, always remaining tangent to at least one side of the triangle. When $P$ first returns to its original position, through what distance has $P$ traveled?

$\text{(A) } 10\quad \text{(B) } 12\quad \text{(C) } 14\quad \text{(D) } 15\quad \text{(E) } 17$

Solution

Problem 28

How many triangles with positive area are there whose vertices are points in the $xy$-plane whose coordinates are integers $(x,y)$ satisfying $1\le x\le 4$ and $1\le y\le 4$?

$\text{(A) } 496\quad \text{(B) } 500\quad \text{(C) } 512\quad \text{(D) } 516\quad \text{(E) } 560$


Solution

Problem 29

Which of the following could NOT be the lengths of the external diagonals of a right regular prism [a "box"]? (An $\textit{external diagonal}$ is a diagonal of one of the rectangular faces of the box.)

$\text{(A) }\{4,5,6\}} \quad \text{(B) } \{4,5,7\}} \quad \text{(C) } \{4,6,7\}} \quad \text{(D) } \{5,6,7\}} \quad \text{(E) } \{5,7,8\}}$ (Error compiling LaTeX. Unknown error_msg)

Solution

Problem 30

Given $0\le x_0<1$, let

\[x_n=\left\{ \begin{tabular}{ll}
2x_{n-1} &\text{ if }2x_{n-1}<1 \\
2x_{n-1}-1 &\text{ if }2x_{n-1}\ge 1
\end{tabular}}\] (Error compiling LaTeX. Unknown error_msg)

for all integers $n>0$. For how many $x_0$ is it true that $x_0=x_5$?

$\text{(A) 0} \quad \text{(B) 1} \quad \text{(C) 5} \quad \text{(D) 31} \quad \text{(E) }\infty$

Solution

See also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png