Difference between revisions of "1992 AHSME Problems/Problem 17"
Line 1: | Line 1: | ||
The 2-digit integers from 19 to 92 are written consecutively to form the integer <math>N=192021\cdots9192</math>. Suppose that <math>3^k</math> is the highest power of 3 that is a factor of <math>N</math>. What is <math>k</math>? | The 2-digit integers from 19 to 92 are written consecutively to form the integer <math>N=192021\cdots9192</math>. Suppose that <math>3^k</math> is the highest power of 3 that is a factor of <math>N</math>. What is <math>k</math>? | ||
+ | |||
+ | <math>\text{(A) } 0\quad | ||
+ | \text{(B) } 1\quad | ||
+ | \text{(C) } 2\quad | ||
+ | \text{(D) } 3\quad | ||
+ | \text{(E) more than } 3</math> | ||
== Solution == | == Solution == |
Revision as of 23:11, 27 September 2014
The 2-digit integers from 19 to 92 are written consecutively to form the integer . Suppose that is the highest power of 3 that is a factor of . What is ?
Solution
See also
1992 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.