Difference between revisions of "1992 AHSME Problems/Problem 21"

m
m
Line 1: Line 1:
 +
== Problem ==
 +
 
For a finite sequence <math>A=(a_1,a_2,...,a_n)</math> of numbers, the ''Cesáro sum'' of A is defined to be  
 
For a finite sequence <math>A=(a_1,a_2,...,a_n)</math> of numbers, the ''Cesáro sum'' of A is defined to be  
 
 
<math>\frac{S_1+\cdots+S_n}{n}</math> , where <math>S_k=a_1+\cdots+a_k</math> and <math>1\leq k\leq n</math>. If the Cesáro sum of
 
<math>\frac{S_1+\cdots+S_n}{n}</math> , where <math>S_k=a_1+\cdots+a_k</math> and <math>1\leq k\leq n</math>. If the Cesáro sum of
 
 
the 99-term sequence <math>(a_1,...,a_{99})</math> is 1000,  what is the Cesáro sum of the 100-term sequence  
 
the 99-term sequence <math>(a_1,...,a_{99})</math> is 1000,  what is the Cesáro sum of the 100-term sequence  
 +
<math>(1,a_1,...,a_{99})</math>?
  
<math>(1,a_1,...,a_{99})</math>?
+
<math>\text{(A) } 991\quad
 +
\text{(B) } 999\quad
 +
\text{(C) } 1000\quad
 +
\text{(D) } 1001\quad
 +
\text{(E) } 1009</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 22:22, 27 September 2014

Problem

For a finite sequence $A=(a_1,a_2,...,a_n)$ of numbers, the Cesáro sum of A is defined to be $\frac{S_1+\cdots+S_n}{n}$ , where $S_k=a_1+\cdots+a_k$ and $1\leq k\leq n$. If the Cesáro sum of the 99-term sequence $(a_1,...,a_{99})$ is 1000, what is the Cesáro sum of the 100-term sequence $(1,a_1,...,a_{99})$?

$\text{(A) } 991\quad \text{(B) } 999\quad \text{(C) } 1000\quad \text{(D) } 1001\quad \text{(E) } 1009$

Solution

$\fbox{B}$

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png