Difference between revisions of "1992 AHSME Problems/Problem 26"
(Created page with "== Problem == <asy> fill((1,0)--arc((1,0),2,180,225)--cycle,grey); fill((-1,0)--arc((-1,0),2,315,360)--cycle,grey); fill((0,-1)--arc((0,-1),2-sqrt(2),225,315)--cycle,grey); fill(...") |
|||
Line 14: | Line 14: | ||
</asy> | </asy> | ||
− | Semicircle <math>AB</math> has center <math>C</math> and radius <math>1</math>. Point <math>D</math> is on <math>AB</math> and <math>\overline{CD}\ | + | Semicircle <math>\widehat{AB}</math> has center <math>C</math> and radius <math>1</math>. Point <math>D</math> is on <math>\widehat{AB}</math> and <math>\overline{CD}\perp\overline{AB}</math>. Extend <math>\overline{BD}</math> and <math>\overline{AD}</math> to <math>E</math> and <math>F</math>, respectively, so that circular arcs <math>\widehat{AE}</math> and <math>\widehat{BF}</math> have <math>B</math> and <math>A</math> as their respective centers. Circular arc <math>\widehat{EF}</math> has center <math>D</math>. The area of the shaded "smile" <math>AEFBDA</math>, is |
− | <math>\text{(A) } \quad | + | <math>\text{(A) } (2-\sqrt{2})\pi\quad |
− | \text{(B) } \quad | + | \text{(B) } 2\pi-\pi \sqrt{2}-1\quad |
− | \text{(C) } \quad | + | \text{(C) } (1-\frac{\sqrt{2}}{2})\pi\quad\\ |
− | \text{(D) } \quad | + | \text{(D) } \frac{5\pi}{2}-\pi\sqrt{2}-1\quad |
− | \text{(E) } </math> | + | \text{(E) } (3-2\sqrt{2})\pi</math> |
== Solution == | == Solution == | ||
Line 28: | Line 28: | ||
{{AHSME box|year=1993|num-b=1|num-a=2}} | {{AHSME box|year=1993|num-b=1|num-a=2}} | ||
− | [[Category: | + | [[Category: Intermediate Geometry Problems]] |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:32, 27 September 2014
Problem
Semicircle has center and radius . Point is on and . Extend and to and , respectively, so that circular arcs and have and as their respective centers. Circular arc has center . The area of the shaded "smile" , is
Solution
See also
1993 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.