Difference between revisions of "1992 AHSME Problems/Problem 21"

m
Line 6: Line 6:
  
 
<math>(1,a_1,...,a_{99})</math>?
 
<math>(1,a_1,...,a_{99})</math>?
 +
 +
== Solution ==
 +
<math>\fbox{B}</math>
 +
 +
== See also ==
 +
{{AHSME box|year=1992|num-b=20|num-a=22}} 
 +
 +
[[Category: Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:09, 27 September 2014

For a finite sequence $A=(a_1,a_2,...,a_n)$ of numbers, the Cesáro sum of A is defined to be

$\frac{S_1+\cdots+S_n}{n}$ , where $S_k=a_1+\cdots+a_k$ and $1\leq k\leq n$. If the Cesáro sum of

the 99-term sequence $(a_1,...,a_{99})$ is 1000, what is the Cesáro sum of the 100-term sequence

$(1,a_1,...,a_{99})$?

Solution

$\fbox{B}$

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png